【題目】如圖,AB∥CD,OE平分∠AOD交CD于E,OF⊥EO,OG⊥CD,∠D=50°,則下列結(jié)論:①∠AOE=60°;②∠DOF=25°;③∠GOE=∠DOF;④OF平分∠BOD,其中正確的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】C
【解析】
由平行線的性質(zhì)結(jié)合角平分線的定義,再結(jié)合垂直的定義,可分別求得∠AOE、∠GOE、∠DOF、∠BOD,可判定結(jié)論,得出正確答案.
解:∵AB∥CD,
∴∠BOD=∠CDO=50°,
∴∠AOD=180°-50°=130°,
又∵OE平分∠AOD,
∴∠AOE=∠AOD=65°,
故①錯(cuò)誤;
∵OG⊥CD,
∴∠GOA=∠DGO=90°,
∴∠GOD=40°,∠GOE=90°-∠AOE=25°,
∴∠EOG+∠GOD=65°,
又OE⊥OF,
∴∠DOF=25°,
∴∠GOE=∠DOF=25°,
∴∠BOF=25°
∴OF平分∠BOD,
故②③④正確;
故選擇:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù)下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近______ ;精確到
試估算口袋中白種顏色的球有多少只?
請(qǐng)畫樹狀圖或列表計(jì)算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
當(dāng)n個(gè)最小的連續(xù)偶數(shù)(從2開始)相加時(shí),它們的和與n之間有什么樣的關(guān)系,請(qǐng)用公式表示出來(lái),并由此計(jì)算:
①2+4+6+…+200的值;
②(-22)+(-24)+(-26)+…+(-300)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“中國(guó)結(jié)”.直線與 交于一點(diǎn).
(1)求直線與軸的交點(diǎn)坐標(biāo);
(2)如圖,定點(diǎn),動(dòng)點(diǎn)在直線上運(yùn)動(dòng).當(dāng)線段最短時(shí),求出點(diǎn)的坐標(biāo),并判斷點(diǎn)是否為“中國(guó)結(jié)”;
(3)當(dāng)直線與的交點(diǎn)為“中國(guó)結(jié)”時(shí),求滿足條件的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開通了,中國(guó)聯(lián)通公布了資費(fèi)標(biāo)準(zhǔn),其中包月元時(shí),超出部分國(guó)內(nèi)撥打元/分.由于業(yè)務(wù)多,小明的爸爸打電話已超出了包月費(fèi).下表是超出部分國(guó)內(nèi)撥打的收費(fèi)標(biāo)準(zhǔn).
時(shí)間/分 | 1 | 2 | 3 | 4 | 5 | … |
電話費(fèi)/元 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | … |
(1)這個(gè)表反映了哪兩個(gè)變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)如果用表示超出時(shí)間,表示超出部分的電話費(fèi),那么與的關(guān)系式是什么?
(3)如果打電話超出分鐘,需多付多少電話費(fèi)?
(4)某次打電話的費(fèi)用超出部分是元,那么小明的爸爸打電話超出幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,是的平分線,折疊使得點(diǎn)落在邊上的處,連接、.下列結(jié)論:①;②是等腰三角形;③;④.其中正確的結(jié)論是______.(填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=6cm,∠A=60°,點(diǎn)E以1cm/s的速度沿AB邊由A向B勻速運(yùn)動(dòng),同時(shí)點(diǎn)F以2cm/s的速度沿CB邊由C向B運(yùn)動(dòng),F到達(dá)點(diǎn)B時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△DEF為等邊三角形時(shí),t的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系內(nèi),已知點(diǎn)P(3,3),A(0,b)是y軸上一點(diǎn),過(guò)P作PA的垂線交x軸于B(a,0),則稱Q(a,b)為點(diǎn)P的一個(gè)關(guān)聯(lián)點(diǎn)。
(1)寫出點(diǎn)P的不同的兩個(gè)關(guān)聯(lián)點(diǎn)的坐標(biāo)是 、 ;
(2)若點(diǎn)P的關(guān)聯(lián)點(diǎn)Q(x,y)滿足5x-3y=14,求出Q點(diǎn)坐標(biāo);
(3)已知C(-1,-1)。若點(diǎn)A、點(diǎn)B均在所在坐標(biāo)軸的正半軸上運(yùn)動(dòng),求△CAB的面積最大值,并說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com