【題目】如圖,過(guò)點(diǎn)C(3,4)的直線軸于點(diǎn)A,∠ABC=90°,AB=CB,曲線過(guò)點(diǎn)B,將點(diǎn)A沿軸正方向平移個(gè)單位長(zhǎng)度恰好落在該曲線上,則的值為________

【答案】4

【解析】

分別過(guò)點(diǎn)B、點(diǎn)C軸和軸的平行線,兩條平行線相交于點(diǎn)M,與軸的交點(diǎn)為N.將C(3,4)代入可得b=-2,然后求得A點(diǎn)坐標(biāo)為(1,0),證明△ABN≌△BCM,可得AN=BM=3CM=BN=1,可求出B(4,1),即可求出k=4,由A點(diǎn)向上平移后落在上,即可求得a的值.

分別過(guò)點(diǎn)B、點(diǎn)C軸和軸的平行線,兩條平行線相交于點(diǎn)M,與軸的交點(diǎn)為N,則∠M=∠ANB=90°

C(3,4)代入,得4=6+b,解得:b=-2

所以y=2x-2,

y=0,則0=2x-2,解得:x=1,

所以A(10)

∠ABC=90°,

∠CBM+∠ABN=90°

∠ANB=90°,

∠BAN+∠ABN=90°

∠CBM=∠BAN,

∵∠M=∠ANB=90°,AB=BC

∴△ABN≌△BCM,

AN=BM,BN=CM,

C(3,4),設(shè)AN=m,CM=n,

則有,解得,

ON=3+1=4,BN=1

B(4,1),

∵曲線過(guò)點(diǎn)B,

k=4,

,

∵將點(diǎn)A沿軸正方向平移個(gè)單位長(zhǎng)度恰好落在該曲線上,此時(shí)點(diǎn)A移動(dòng)后對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1a),

∴a=4,

故答案為:4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD△ABC的一條高線.若E,F(xiàn)分別是CDBC上的動(dòng)點(diǎn),則BE+EF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織數(shù)學(xué)興趣探究活動(dòng),愛(ài)思考的小實(shí)同學(xué)在探究?jī)蓷l直線的位置關(guān)系查閱資料時(shí)發(fā)現(xiàn),兩條中線互相垂直的三角形稱(chēng)為中垂三角形.如圖1、圖2、圖3中,、的中線,于點(diǎn),像這樣的三角形均稱(chēng)為中垂三角形

(特例探究)

1)如圖1,當(dāng),時(shí),___________;

如圖2,當(dāng)時(shí),_____,______;

(歸納證明)

2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想、三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論;

(拓展證明)

3)如圖4,在中,,、分別是邊、的中點(diǎn),連結(jié)并延長(zhǎng)至,使得,連結(jié),當(dāng)于點(diǎn)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A21),B1,4),C3,2).請(qǐng)解答下列問(wèn)題:

1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的圖形△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);

2)以原點(diǎn)O為位似中心,位似比為12,在y軸的右側(cè),畫(huà)出△ABC放大后的圖形△A2B2C2,并直接寫(xiě)出C2點(diǎn)的坐標(biāo);

3)如果點(diǎn)Dab)在線段BC上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(2)的變化后對(duì)應(yīng)點(diǎn)D2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)Px軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?

(3)點(diǎn)P在線段AB運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了創(chuàng)建文明城市,增強(qiáng)學(xué)生的環(huán)保意識(shí).隨機(jī)抽取8名學(xué)生,對(duì)他們的垃圾分類(lèi)投放情況進(jìn)行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯(cuò)誤,統(tǒng)計(jì)情況如下表.

學(xué)生

垃圾類(lèi)別

廚余垃圾

可回收垃圾

×

×

×

有害垃圾

×

×

×

×

其他垃圾

×

×

×

1)求8名學(xué)生中至少有三類(lèi)垃圾投放正確的概率;

2)為進(jìn)一步了解垃圾分類(lèi)投放情況,現(xiàn)從8名學(xué)生里有害垃圾投放錯(cuò)誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于邊形,甲、乙、丙三位同學(xué)有以下三種說(shuō)法:

甲:五邊形的內(nèi)角和為

乙:正六邊形每個(gè)內(nèi)角為

丙:七邊形共有對(duì)角線14

1)判斷三種說(shuō)法是否正確,并對(duì)其中你認(rèn)為不對(duì)的說(shuō)法用計(jì)算進(jìn)行說(shuō)明

2)若邊形的對(duì)角線共35條,求該邊形的內(nèi)角和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D、E分別在邊ABBC上,AD=BECDAE交于F

1)求∠AFD的度數(shù);

2)若BE=m,CE=n

①求的值;(用含有mn的式子表示)

②若=,直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹(shù)木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買(mǎi)A種樹(shù)木2棵,B種樹(shù)木5棵,共需600元;購(gòu)買(mǎi)A種樹(shù)木3棵,B種樹(shù)木1棵,共需380元.

(1)求A種,B種樹(shù)木每棵各多少元?

(2)因布局需要,購(gòu)買(mǎi)A種樹(shù)木的數(shù)量不少于B種樹(shù)木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買(mǎi)樹(shù)木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案