【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)、、

1)求拋物線的解析式;

2)若與拋物線的對(duì)稱軸交于點(diǎn),以為圓心,長(zhǎng)為半徑作圓,軸的位置關(guān)系如何?請(qǐng)說明理由.

3)過點(diǎn)的切線,交軸于點(diǎn),請(qǐng)求出直線的解析式及點(diǎn)坐標(biāo).

【答案】1y=﹣x2x+4;(2)⊙Ay軸的位置關(guān)系是相交,理由見解析;(3)直線GE的表達(dá)式為:y=﹣x+,G,0).

【解析】

1)根據(jù)待定系數(shù)法,即可求解;

2)根據(jù)待定系數(shù)法,求出直線AC的表達(dá)式為:yx+4,進(jìn)而求出點(diǎn)E的坐標(biāo),可得AE的長(zhǎng),比較AEAO的大小關(guān)系,即可得到結(jié)論;

3)由直線AC的表達(dá)式為:yx+4,結(jié)合ACEG,可得直線EG的表達(dá)式為:y=﹣x+m,結(jié)合點(diǎn)E的坐標(biāo),可得直線GE的表達(dá)式,進(jìn)而即可求解.

1)∵拋物線經(jīng)過點(diǎn)、,

∴設(shè)二次函數(shù)的表達(dá)式為:yax+3)(x2)=ax2+x6),

C(0,4)代入得:﹣6a4,解得:a=﹣,

∴拋物線的表達(dá)式為:y=﹣x2x+4;

2)⊙Ay軸的位置關(guān)系是相交,理由如下:

設(shè)直線AC的解析式為ykx+b,

將點(diǎn)AC的坐標(biāo)代入一次函數(shù)表達(dá)式:ykx+b得:,解得:,

∴直線AC的表達(dá)式為:yx+4

∵拋物線的對(duì)稱軸為:直線x=﹣,

∴當(dāng)x=﹣時(shí),y

∴點(diǎn)E(﹣),

AEAO,

∴⊙Ay軸的位置關(guān)系是相交;

3)直線AC的表達(dá)式為:yx+4,

的切線,切點(diǎn)是點(diǎn)E,

ACEG

∴設(shè)直線EG的表達(dá)式為:y=﹣x+m,

將點(diǎn)E的坐標(biāo)代入上式,得=﹣×()+m,解得:m,

∴直線GE的表達(dá)式為:y=﹣x+,

∵當(dāng)y0時(shí),x,

∴點(diǎn)G(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個(gè)角的平分線,他的做法是這樣的:如圖,

①利用刻度尺在∠AOB的兩邊OAOB上分別取OM=ON;

②利用兩個(gè)三角板,分別過點(diǎn)M,NOM,ON的垂線,交點(diǎn)為P;

③畫射線OP.則射線OP為∠AOB的平分線.

(1)請(qǐng)寫出射線OP為∠AOB的平分線的證明過程.

(2)請(qǐng)根據(jù)你的證明過程,寫出小林的畫法的依據(jù)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以E3,0)為圓心,以5為半徑的⊙Ex軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線經(jīng)過A,BC三點(diǎn),頂點(diǎn)為F

1)求A,B,C三點(diǎn)的坐標(biāo);

2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);

3)已知M為拋物線上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:

使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);

若探究中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富校園文化,某學(xué)校決定舉行學(xué)生趣味運(yùn)動(dòng)會(huì),將比賽項(xiàng)目確定為袋鼠跳、夾球跑、跳大繩、綁腿跑和拔河賽五種.為了解學(xué)生對(duì)這五項(xiàng)運(yùn)動(dòng)的喜歡情況,隨機(jī)調(diào)查了該校a名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇五項(xiàng)中的一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表:

學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

項(xiàng)目

學(xué)生數(shù)(名)

百分比(%

袋鼠跳

45

15

夾球跑

30

c

跳大繩

75

25

綁腿跑

b

m

拔河賽

90

30

根據(jù)圖表中提供的信息,解答下列問題:

1a   b   ,c   ;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校3000名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分對(duì)應(yīng)值如下表:

-1

0

2

3

4

5

0

-4

-3

0

下列結(jié)論:①拋物線開口向上;②拋物線的對(duì)稱軸為直線;③當(dāng)時(shí),;④拋物線與軸的兩個(gè)交點(diǎn)間的距離是4;⑤若,是拋物線上兩點(diǎn),則,其中正確的結(jié)論是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1 ,在中,邊上一點(diǎn)(不與點(diǎn)重合),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接

(發(fā)現(xiàn)問題)

1)如圖1 ,通過圖形旋轉(zhuǎn)的性質(zhì),可知_______ 度;

(解決問題)

2)如圖1,證明;

(拓展延伸)

如圖2,在中,外一點(diǎn),且,仍將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接

3)若求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,點(diǎn)PAB的延長(zhǎng)線上,PC與⊙O相切于點(diǎn)C,點(diǎn)D為弧AC上的點(diǎn),且2DAB﹣∠P90°,連接AD

1)如圖1,求證:弧AD=弧BC;

2)如圖2,PC6PB,求∠ADC度數(shù);

3)如圖3,在(2)的條件下,FAB下方⊙O上一點(diǎn).∠ACF60°,LOF中點(diǎn),LKALL,交CF于點(diǎn)K.連接AK,求AK的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對(duì)角線ACBD的交點(diǎn),MBC邊上的動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)BC重合),過點(diǎn)CCNDMAB于點(diǎn)N,連結(jié)OM、ON,MN.下列五個(gè)結(jié)論:CNB≌△DMC;ONOMONOM;AB2,則SOMN的最小值是1;AN2+CM2MN2.其中正確結(jié)論是_____(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹BC的高度,他在點(diǎn)A測(cè)得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為12(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).

1)求小明從點(diǎn)A走到點(diǎn)D的過程中,他上升的高度;

2)大樹BC的高度約為多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案