【題目】如圖,、是兩個全等的等腰直角三角形,.
若將的頂點放在上(如圖),、分別與、相交于點、.求證:;
若使的頂點與頂點重合(如圖),、與相交于點、.試問與還相似嗎?為什么?
【答案】(1)見解析;(2)與相似.理由見解析
【解析】
(1)如圖1,先根據(jù)等腰直角三角形的性質得∠B=∠C=∠DPE=45°,再利用平角定義得到∠BPG+∠CPF=135°,利用三角形內角和定理得到∠BPG+∠BGP=135°,根據(jù)等量代換得∠BGP=∠CPF,加上∠B=∠C,于是根據(jù)有兩組角對應相等的兩個三角形相似即可得到結論;
(2)如圖2,由于∠B=∠C=∠DPE=45°,利用三角形外角性質得∠BGP=∠C+∠CPG=45°+∠CAG,而∠CPF=45°+∠CAG,所以∠AGP=∠CPF,加上∠B=∠C,于是可判斷△PBG∽△FCP.
證明:如圖,
∵、是兩個全等的等腰直角三角形,
∴,
∴,
在中,∵,
∴,
∴,
∵,
∴;
解:與相似.理由如下:
如圖,∵、是兩個全等的等腰直角三角形,
∴,
∵,
,
∴,
∵,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC中,AC=BC=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經(jīng)過點C,并且與CB的夾角∠PCB=α,斜邊PN交AC于點D.
(1)當PN∥BC時,判斷△ACP的形狀,并說明理由;
(2)點P在滑動時,當AP長為多少時,△ADP與△BPC全等,為什么?
(3)點P在滑動時,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大小;若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=(2m+4)x,求:
(1)m為何值時,函數(shù)圖象經(jīng)過第一、三象限?
(2)m為何值時,y隨x的增大而減?
(3)m為何值時,點(1,3)在該函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們新定義一種三角形:若一個三角形中存在兩邊的平方差等于第三邊上高的平方,則稱這個三角形為勾股高三角形,兩邊交點為勾股頂點.
●特例感知
①等腰直角三角形 勾股高三角形(請?zhí)顚?/span>“是”或者“不是”);
②如圖1,已知△ABC為勾股高三角形,其中C為勾股頂點,CD是AB邊上的高.若,試求線段CD的長度.
●深入探究
如圖2,已知△ABC為勾股高三角形,其中C為勾股頂點且CA>CB,CD是AB邊上的高.試探究線段AD與CB的數(shù)量關系,并給予證明;
●推廣應用
如圖3,等腰△ABC為勾股高三角形,其中,CD為AB邊上的高,過點D向BC邊引平行線與AC邊交于點E.若,試求線段DE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是圓圓設計的“作等腰三角形一腰上的高線”的尺規(guī)作圖過程 .
已知:△,.
求作:邊上的高線.
作法:如圖,
①以點為圓心,為半徑畫弧,交于點和點;
②分別以點和點為圓心,大于長為半徑畫弧,兩弧相交于點;
③作射線交于點.
所以線段就是所求作的邊上的高線.
根據(jù)圓圓設計的尺規(guī)作圖過程,完成下列問題:
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面證明.
證明:∵,
∴點在線段的垂直平分線上(__________) (填推理的依據(jù)).
∵__________=__________,
∴點在線段的垂直平分線上.
∴是線段的垂直平分線.
∴⊥.
∴線段就是邊上的高線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,翻折,使點落在斜邊上某一點處,折痕為(點、分別在邊、上)
當時,若與相似(如圖),求的長;
當點是的中點時(如圖),與相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨機擲兩枚質地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù),則這兩枚骰子向上的一面點數(shù)都是奇數(shù)的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬AB為12米,拱高CD為4米.
(1)求這座拱橋所在圓的半徑.
(2)現(xiàn)有一艘寬5米,船艙頂部為正方形并高出水面3.6米的貨船要經(jīng)過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com