【題目】下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A.
B.
C.
D.

【答案】B
【解析】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形;

B、是軸對(duì)稱圖形,也是中心對(duì)稱圖形;

C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形;

D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形.

所以答案是:B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解軸對(duì)稱圖形的相關(guān)知識(shí),掌握兩個(gè)完全一樣的圖形關(guān)于某條直線對(duì)折,如果兩邊能夠完全重合,我們就說(shuō)這兩個(gè)圖形成軸對(duì)稱,這條直線就對(duì)稱軸,以及對(duì)中心對(duì)稱及中心對(duì)稱圖形的理解,了解如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對(duì)稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對(duì)稱圖形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,的頂點(diǎn)都在方格紙格點(diǎn)上.

1)將經(jīng)過(guò)平移后得到,圖中標(biāo)出了點(diǎn)A的對(duì)應(yīng)點(diǎn)D,補(bǔ)全;

2)在圖中畫(huà)出的中線BG和高CH

3)在(1)條件下,ADCF的關(guān)系是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老李上周五以收盤(pán)價(jià)每股8元買(mǎi)入某公司股票10000股,下表為本周內(nèi)每日該股票的漲跌情況(單位:元):

星期

股票漲跌

-0.1

0.35

-0.15

-0.4

0.5

1)星期三的收盤(pán)價(jià)比老李的買(mǎi)入價(jià)漲或跌了多少元?

2)本周內(nèi)該股票的最高收盤(pán)價(jià)出現(xiàn)在星期幾?是多少元?

3)已知老李買(mǎi)進(jìn)股票時(shí)要付成交額1‰的手續(xù)費(fèi),賣(mài)出時(shí)還需要付成交額的1‰的印花稅和1‰的手續(xù)費(fèi).如果老李在星期五收盤(pán)前將該股票全部賣(mài)出,則他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰Rt△ABC中,AC=BC=2 ,點(diǎn)P在以斜邊AB為直徑的半圓上,M為PC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是( )

A. π
B.π
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°

1∠DCA的度數(shù);

2∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市大力發(fā)展綠色交通,構(gòu)建公共綠色交通體系,“共享單車”的投入使用給人們的出行帶來(lái)便利.小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)這次被調(diào)查的總?cè)藬?shù)是______;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,求表示A組(t≤10分)的扇形圓心角的度數(shù);

(4)如果騎共享單車的平均速度為12km/h,請(qǐng)估算,在租用共享單車的市民中,騎車路程不超過(guò)6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.

(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知
(1)化簡(jiǎn)A;
(2)若x滿足不等式組 ,且x為整數(shù)時(shí),求A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,

1)證明ABDF是平行四邊形;

2)若AF=DF=5AD=6,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案