【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),在反比例函數(shù)的圖象上運(yùn)動(dòng),且始終保持線段的長(zhǎng)度不變.為線段的中點(diǎn),連接.則線段長(zhǎng)度的最小值是_____(用含的代數(shù)式表示)

【答案】

【解析】

如圖,當(dāng)OMAB時(shí),線段OM長(zhǎng)度的最小.首先證明點(diǎn)A與點(diǎn)B關(guān)于直線y=x對(duì)稱,因?yàn)辄c(diǎn)A,B在反比例函數(shù)的圖象上,AB=4,所以可以假設(shè)Am,),則Bm+4-4),則有=,解得k=m2+4m,推出Am,m+4),Bm+4,m),可得Mm+2,m+2),求出OM即可解決問(wèn)題.

如圖,當(dāng)時(shí),線段長(zhǎng)度的最小,

為線段的中點(diǎn),

,

∵點(diǎn),在反比例函數(shù)的圖象上,

∴點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,

,

∴可以假設(shè),則,

,

解得,

,,

,

,

的最小值為

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市生物和地理會(huì)考的考試結(jié)果以等級(jí)形式呈現(xiàn),分A、BC、D四個(gè)等級(jí).某校八年級(jí)學(xué)生參加生物會(huì)考后,隨機(jī)抽取部分學(xué)生的生物成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績(jī).扇形統(tǒng)計(jì)圖中,D等級(jí)所對(duì)應(yīng)的扇形圓心角度數(shù)為 °;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校八年級(jí)有400名學(xué)生,估計(jì)這次考試有多少名學(xué)生的生物成績(jī)等級(jí)為D級(jí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)為射線上一動(dòng)點(diǎn),將沿折疊,得到恰好落在射線上,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市要進(jìn)一批雞蛋進(jìn)行銷售,有、兩家農(nóng)場(chǎng)可供貨.為了比較兩家提供的雞蛋單個(gè)大小,超市分別對(duì)這兩家農(nóng)場(chǎng)的雞蛋進(jìn)行抽樣檢測(cè),通過(guò)分析數(shù)據(jù)確定雞蛋的供貨商.

1)下列抽樣方式比較合理的是哪一種?請(qǐng)簡(jiǎn)述原因.

①分別從兩家提供的一箱雞蛋中拿出最上面的兩層(共40枚)雞蛋,并分別稱出其中每一個(gè)雞蛋的質(zhì)量.

②分別從、兩家提供的一箱雞蛋中每一層隨機(jī)抽4枚(共40枚)雞蛋,并分別稱出其中每個(gè)雞蛋的質(zhì)量.

2)在用合理的方法抽出兩家提供的雞蛋各40枚后,分別稱出每個(gè)雞蛋的質(zhì)量(單位:),結(jié)果如表所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn)).

4547

4749

4951

5153

5355

農(nóng)場(chǎng)雞蛋

2

8

15

10

5

農(nóng)場(chǎng)雞蛋

4

6

12

14

4

①如果從這兩家農(nóng)場(chǎng)提供的雞蛋中隨機(jī)拿一個(gè),分別估計(jì)兩家雞蛋質(zhì)量在(單位:)范圍內(nèi)的概率(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn));

②如果你是超市經(jīng)營(yíng)者,試通過(guò)數(shù)據(jù)分析確定選擇哪家農(nóng)場(chǎng)提供的雞蛋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時(shí)太陽(yáng)光線與水平面的夾角為32°,此時(shí)塔在建筑物的墻上留下了高3米的影子CD.中午12時(shí)太陽(yáng)光線與地面的夾角為45°,此時(shí)塔尖A在地面上的影子E與墻角C的距離為15米(B、EC在一條直線上),求塔AB的高度.(結(jié)果精確到0.01米)

參考數(shù)據(jù):sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為

(1)求此拋物線的表達(dá)式;

(2)過(guò)點(diǎn)軸,垂足為點(diǎn),于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)點(diǎn),垂足為點(diǎn).請(qǐng)用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí)有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,是常數(shù),且),經(jīng)過(guò)點(diǎn),與軸交于點(diǎn).

(Ⅰ)求拋物線的解析式;

(Ⅱ)若點(diǎn)是射線上一點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為點(diǎn),交拋物線于點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,線段的長(zhǎng)為,求出之間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)在線段上時(shí),設(shè),已知,是以為未知數(shù)的一元二次方程為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)在拋物線上,連接,,,且平分,求出值及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

托勒密定理:

托勒密(Ptolemy)(公元90年~公元168年),希臘著名的天文學(xué)家,他的要著作《天文學(xué)大成》被后人稱為偉大的數(shù)學(xué)書(shū),托勒密有時(shí)把它叫作《數(shù)學(xué)文集》,托勒密從書(shū)中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.

托勒密定理:

圓內(nèi)接四邊形中,兩條對(duì)角線的乘積等于兩組對(duì)邊乘積之和.

已知:如圖1,四邊形ABCD內(nèi)接于⊙O,

求證:ABCD+BCADACBD

下面是該結(jié)論的證明過(guò)程:

證明:如圖2,作∠BAE=∠CAD,交BD于點(diǎn)E

∴∠ABE=∠ACD

∴△ABE∽△ACD

ABCDACBE

∴∠ACB=∠ADE(依據(jù)1

∵∠BAE=∠CAD

∴∠BAE+EAC=∠CAD+EAC

即∠BAC=∠EAD

∴△ABC∽△AED(依據(jù)2

ADBCACED

ABCD+ADBCACBE+ED

ABCD+ADBCACBD

任務(wù):(1)上述證明過(guò)程中的依據(jù)1”、依據(jù)2”分別是指什么?

2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時(shí),托勒密定理就是我們非常熟知的一個(gè)定理:   

(請(qǐng)寫(xiě)出)

3)如圖3,四邊形ABCD內(nèi)接于⊙O,AB3AD5,∠BAD60°,點(diǎn)C的中點(diǎn),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)E在對(duì)角線AC上,點(diǎn)F在邊CD上,連接BEEF.若∠EFC90°+CBE,BE7,EF10.則點(diǎn)DEF的距離為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案