【題目】已知拋物線是常數(shù),且),經(jīng)過(guò)點(diǎn),,與軸交于點(diǎn).

(Ⅰ)求拋物線的解析式;

(Ⅱ)若點(diǎn)是射線上一點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為點(diǎn),交拋物線于點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,線段的長(zhǎng)為,求出之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)在線段上時(shí),設(shè),已知,是以為未知數(shù)的一元二次方程為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)在拋物線上,連接,,,且平分,求出值及點(diǎn)的坐標(biāo).

【答案】(Ⅰ);(Ⅱ),;(Ⅲ)值為點(diǎn)坐標(biāo)為.

【解析】

(Ⅰ)將點(diǎn)A和點(diǎn)B30)坐標(biāo)代入y=a+bx+3得到ab的方程組,然后解方程求出ab,即可得到拋物線的解析式;

(Ⅱ)先根據(jù)待定系數(shù)法求出直線BC的解析式,分當(dāng)點(diǎn)P在線段CB上時(shí),和點(diǎn)P在射線BN上時(shí),兩種情況討論,點(diǎn)的橫坐標(biāo)為,得出P點(diǎn)的坐標(biāo)為(t-t+3),Q點(diǎn)的坐標(biāo)為(t,-t2+2t+3),就可以得出dt之間的函數(shù)關(guān)系式而得出結(jié)論;

(Ⅲ)根據(jù)根的判別式就可以求出m的值,就可以求出方程的解而求得PQPH的值,延長(zhǎng)MPL,使LP=MP,連接LQLH,延長(zhǎng)MPL,使LP=MP,連接LQ、LH,就可以得出四邊形LQMH是平行四邊形,進(jìn)而得出四邊形LQMH是菱形,由菱形的性質(zhì)就可以求出結(jié)論.

解:(Ⅰ)將代入,

解得

∴拋物線的解析式為

(Ⅱ)∵點(diǎn)的坐標(biāo)為,

設(shè)直線的方程為,

代入,得.

解得.

∴直線的方程為.

點(diǎn)的橫坐標(biāo)為,且垂直于軸,

點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.

①如圖,當(dāng)點(diǎn)在線段上時(shí),

.

②如圖,當(dāng)點(diǎn)在射線上時(shí),

.

(Ⅲ)∵的兩個(gè)實(shí)數(shù)根.

,即.

整理得:.

.

.

∴方程為.

解得.

的兩個(gè)實(shí)數(shù)根,

所以.

.

.

如圖,延長(zhǎng),使,連接,

,

∴四邊形是平行四邊形.

.

.

.

.

是菱形.

.

∴點(diǎn)的縱坐標(biāo)與點(diǎn)縱坐標(biāo)相等,都是.

中,當(dāng)時(shí),.

.

解得.

綜上所述:值為,點(diǎn)坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y2x+b的圖象與x軸的交點(diǎn)為A2,0),與y軸的交點(diǎn)為B,直線AB與反比例函數(shù)y的圖象交于點(diǎn)C(﹣1m).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)直接寫出關(guān)于x的不等式2x+b的解集;

3)點(diǎn)P是這個(gè)反比例函數(shù)圖象上的點(diǎn),過(guò)點(diǎn)PPMx軸,垂足為點(diǎn)M,連接OP,BM,當(dāng)SABM2SOMP時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:若拋物線的頂點(diǎn)在拋物線上,拋物線的頂點(diǎn)也在拋物線上(點(diǎn)與點(diǎn)不重合),我們稱這樣的兩條拋物線、互為友好拋物線,如圖1

解決問(wèn)題:如圖2,已知物線軸交于點(diǎn)

1)若點(diǎn)與點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,求點(diǎn)的坐標(biāo);

2)求出以點(diǎn)為頂點(diǎn)的友好拋物線的解析式;

3)直接寫出同時(shí)隨增大而增大的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在反比例函數(shù)的圖象上運(yùn)動(dòng),且始終保持線段的長(zhǎng)度不變.為線段的中點(diǎn),連接.則線段長(zhǎng)度的最小值是_____(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)上,且點(diǎn)也在格點(diǎn)上.

(Ⅰ)的值為_____________;

(Ⅱ)是以點(diǎn)為圓心,為半徑的一段圓弧.在如圖所示的網(wǎng)格中,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接,,當(dāng)的值最小時(shí),請(qǐng)用無(wú)刻度的直尺畫出點(diǎn),并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的(不要求證明)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、F分別是BCAC邊的中點(diǎn),連接DADF,且AD2DF,過(guò)點(diǎn)BAD的平行線交FD的延長(zhǎng)線于點(diǎn)E

1)求證:四邊形ABED為菱形;

2)若BD6,∠E60°,求四邊形ABEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在兩個(gè)點(diǎn)AB,使得點(diǎn)P在射線BC上,且∠APBACB<∠ACB180°),則稱P為⊙C的依附點(diǎn).

1)當(dāng)⊙O的半徑為1時(shí),

①已知點(diǎn)D(﹣1,0),E0,﹣2),F2.5,0),在點(diǎn)D、E、F中,⊙O的依附點(diǎn)是  ;

②點(diǎn)T在直線y=﹣x上,若T為⊙O的依附點(diǎn),求點(diǎn)T的橫坐標(biāo)t的取值范圍;

2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+2x軸、y軸分別交于點(diǎn)M、N,若線段MN上的所有點(diǎn)都是⊙C的依附點(diǎn),直接寫出圓心C的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一張矩形紙片進(jìn)行折疊,具體操作過(guò)程如下:第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)BMN上的對(duì)應(yīng)點(diǎn)為B',得RtAB'E,如圖2;第三步:沿EB'線折疊得折痕EF,使A點(diǎn)落在EC的延長(zhǎng)線上,如圖3.  

利用展開(kāi)圖4探究:

(1)△AEF是什么三角形?證明你的結(jié)論;

(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了開(kāi)展讀書(shū)月活動(dòng),對(duì)學(xué)生最喜歡的圖書(shū)種類進(jìn)行了一次抽樣調(diào)查,所有圖書(shū)分成四類:藝術(shù)、文學(xué)、科普、其他.隨機(jī)調(diào)查了該校m名學(xué)生(每名學(xué)生必選且只能選擇一類圖書(shū)),并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1m   ,n   ,并請(qǐng)根據(jù)以上信息補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中,“藝術(shù)”所對(duì)應(yīng)的扇形的圓心角度數(shù)是   度;

3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校900名學(xué)生中有多少學(xué)生最喜歡科普類圖書(shū).

查看答案和解析>>

同步練習(xí)冊(cè)答案