【題目】小明在學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:
(習(xí)題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點(diǎn).求證:;
(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長(zhǎng)線于點(diǎn),其反向延長(zhǎng)線與邊的延長(zhǎng)線交于點(diǎn),則與還相等嗎?說(shuō)明理由;
(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線交于點(diǎn).的外角的平分線所在直線與的延長(zhǎng)線交于點(diǎn).直接寫(xiě)出與的數(shù)量關(guān)系.
【答案】[習(xí)題回顧]證明見(jiàn)解析;[變式思考] 相等,證明見(jiàn)解析;[探究延伸] ∠M+∠CFE=90°,證明見(jiàn)解析.
【解析】
[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;
[變式思考]根據(jù)角平分線的定義和對(duì)頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;
[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.
[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,
∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,
∴∠B=∠ACD,
∵AE是角平分線,
∴∠CAF=∠DAF,
∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,
∴∠CEF=∠CFE;
[變式思考]相等,理由如下:
證明:∵AF為∠BAG的角平分線,
∴∠GAF=∠DAF,
∵∠CAE=∠GAF,
∴∠CAE=∠DAF,
∵CD為AB邊上的高,∠ACB=90°,
∴∠ADC=90°,
∴∠ADF=∠ACE=90°,
∴∠DAF+∠F=90°,∠E+∠CAE=90°,
∴∠CEF=∠CFE;
[探究延伸]∠M+∠CFE=90°,
證明:∵C、A、G三點(diǎn)共線AE、AN為角平分線,
∴∠EAN=90°,
又∵∠GAN=∠CAM,
∴∠M+∠CEF=90°,
∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,
∴∠CEF=∠CFE,
∴∠M+∠CFE=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:以O(shè)為圓心的扇形AOB中,∠AOB=90°,點(diǎn)C為 上一動(dòng)點(diǎn),射線AC交射線OB于點(diǎn)D,過(guò)點(diǎn)D作OD的垂線交射線OC于點(diǎn)E,聯(lián)結(jié)AE.
(1)如圖1,當(dāng)四邊形AODE為矩形時(shí),求∠ADO的度數(shù);
(2)當(dāng)扇形的半徑長(zhǎng)為5,且AC=6時(shí),求線段DE的長(zhǎng);
(3)聯(lián)結(jié)BC,試問(wèn):在點(diǎn)C運(yùn)動(dòng)的過(guò)程中,∠BCD的大小是否確定?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y1= (a>0,a為常數(shù))和y2= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y2= 的圖象上,MC⊥x軸于點(diǎn)C,交y1= 的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y1= 的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y2= 的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:
①S△ODB=S△OCA;
②四邊形OAMB的面積為2﹣a;
③當(dāng)a=1時(shí),點(diǎn)A是MC的中點(diǎn);
④若S四邊形OAMB=S△ODB+S△OCA , 則四邊形OCMD為正方形.
其中正確的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接濟(jì)川中學(xué)紅歌演講比賽,濟(jì)川校區(qū)七年級(jí)(15)(16)班決定訂購(gòu)?fù)惶追b,兩班一共有103人(15班人數(shù)多于16班),經(jīng)協(xié)商,某服裝店給出的價(jià)格如下:
購(gòu)買(mǎi)人數(shù)/人 | 1~50人 | 50~100人 | 100以上人 |
每套服裝價(jià)格/元 | 50 | 45 | 40 |
例如:若購(gòu)買(mǎi)人數(shù)為60人,則購(gòu)買(mǎi)共需花費(fèi)60×45=2700元.
(1)如果兩個(gè)班都以班為單位分別購(gòu)買(mǎi),則一共需花費(fèi)4875元,那么15,16班各有多少名學(xué)生?
(2)如果兩個(gè)班聯(lián)合起來(lái),做為一個(gè)整體購(gòu)買(mǎi),則能節(jié)省多少元錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,拋物線L經(jīng)過(guò)O,P,A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).
(1)點(diǎn)P的坐標(biāo)為;
(2)求拋物線L的解析式;
(3)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了創(chuàng)建國(guó)家衛(wèi)生城市,需要購(gòu)買(mǎi)甲、乙兩種類(lèi)型的分類(lèi)垃圾桶替換原來(lái)的垃圾桶,,,三個(gè)小區(qū)所購(gòu)買(mǎi)的數(shù)量和總價(jià)如表所示.
甲型垃圾桶數(shù)量(套) | 乙型垃圾桶數(shù)量(套) | 總價(jià)(元) | |
(1)問(wèn)甲型垃圾桶、乙型垃圾桶的單價(jià)分別是每套多少元?
(2)求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】福田區(qū)某轎車(chē)銷(xiāo)售公司為龍泉工業(yè)區(qū)代銷(xiāo) A 款轎車(chē),為了吸引購(gòu)車(chē)族,銷(xiāo)售公司打出降價(jià)牌,今年 5月份A款轎車(chē)每輛售價(jià)比去年同期每輛售價(jià)低 1萬(wàn)元,如果賣(mài)出相同數(shù)量的 A 款轎車(chē),去年的銷(xiāo)售額為100萬(wàn)元,今年銷(xiāo)售額只有90萬(wàn)元.
(1)今年 5月份 A 款轎車(chē)每輛售價(jià)為多少元?
(2)為了增加收入,該轎車(chē)公司決定再為龍泉工業(yè)區(qū)代銷(xiāo) B款轎車(chē),已知 A款轎車(chē)每輛進(jìn)價(jià)為 7.5萬(wàn)元,B款轎車(chē)每輛進(jìn)價(jià)為 6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元的資金購(gòu)進(jìn)這兩款轎車(chē)共 15 輛,但A款轎車(chē)不多于6輛,試問(wèn)共有幾種進(jìn)貨方案?
(3)在⑵的條件下,B款轎車(chē)每輛售價(jià)為 8萬(wàn)元,為打開(kāi)B款轎車(chē)的銷(xiāo)路,公司決定每售出一輛 B款轎車(chē),返還顧客現(xiàn)金a( 0<a ≤1 )萬(wàn)元.假設(shè)購(gòu)進(jìn)的15輛車(chē)能夠全部賣(mài)出去,試討論采用哪種進(jìn)貨方案可以使該轎車(chē)銷(xiāo)售公司賣(mài)出這 15輛車(chē)后獲得最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】清朝康熙皇帝是我國(guó)歷史上對(duì)數(shù)學(xué)很有興趣的帝王近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專(zhuān)著,其中有一文《積求勾股法》,它對(duì)“三邊長(zhǎng)為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長(zhǎng)”這一問(wèn)題提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開(kāi)之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語(yǔ)言表述是:“若直角三角形的三邊長(zhǎng)分別為3、4、5的整數(shù)倍,設(shè)其面積為S,則第一步: =m;第二步: =k;第三步:分別用3、4、5乘以k,得三邊長(zhǎng)”.
(1)當(dāng)面積S等于150時(shí),請(qǐng)用康熙的“積求勾股法”求出這個(gè)直角三角形的三邊長(zhǎng);
(2)你能證明“積求勾股法”的正確性嗎?請(qǐng)寫(xiě)出證明過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com