【題目】一輛慢車(chē)與一輛快車(chē)分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,兩車(chē)在途中相遇后都停留一段時(shí)間,然后分別按原速一同駛往甲地后停車(chē).設(shè)慢車(chē)行駛的時(shí)間為x小時(shí),兩車(chē)之間的距離為y千米,圖中折線表示y與x之間的函數(shù)圖象,請(qǐng)根據(jù)圖象解決下列問(wèn)題:
(1)甲乙兩地之間的距離為_(kāi)_____千米;
(2)求快車(chē)和慢車(chē)的速度;
(3)求線段DE所表示的y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
【答案】(1)560;(2)快車(chē):80km/h;慢車(chē):60km/h;(3)y=﹣60x+540(8≤x≤9)
【解析】試題分析:(1)根據(jù)函數(shù)圖象直接得出答案;(2)根據(jù)題意得出:慢車(chē)往返分別用了4小時(shí),慢車(chē)行駛4小時(shí)的距離,快車(chē)3小時(shí)即可行駛完,然后設(shè)慢車(chē)速度為3xkm/h,快車(chē)速度為4xkm/h,從而得出答案;(3)分別根據(jù)圖象以及所求的速度得出點(diǎn)D和點(diǎn)E的坐標(biāo).然后利用待定系數(shù)法求出函數(shù)解析式.
試題解析:(1)由題意可得出:甲乙兩地之間的距離為560千米;
(2)由題意可得出:慢車(chē)往返分別用了4小時(shí),慢車(chē)行駛4小時(shí)的距離,快車(chē)3小時(shí)即可行駛完,
∴設(shè)慢車(chē)速度為3xkm/h,快車(chē)速度為4xkm/h, ∵由題意可得出:快車(chē)行駛?cè)逃昧?/span>7小時(shí),
∴快車(chē)速度為:=80(km/h), ∴4x=80 ∴x=20 ∴慢車(chē)速度為:3x=3×20=60(km/h),
(3)由題意可得出:當(dāng)行駛7小時(shí)后,慢車(chē)距離甲地60km, ∴D(8,60)
∵慢車(chē)往返各需4小時(shí), ∴E(9,0), 設(shè)DE的解析式為:y=kx+b,
∴, 解得:.
∴線段DE所表示的y與x之間的函數(shù)關(guān)系式為:y=﹣60x+540(8≤x≤9).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“同旁?xún)?nèi)角互補(bǔ)”的逆命題是_____________________,它是_____命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,是假命題的是( 。
A. 樣本方差越大,數(shù)據(jù)波動(dòng)越小
B. 正十七邊形的外角和等于360°
C. 位似圖形必定相似
D. 方程x2+x+1=0無(wú)實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱(chēng)軸為直線x=1.下列結(jié)論:①abc>0 ;②4a+2b+c>0 ;③4ac﹣b2<8a ;④ <a<;⑤b>c.其中正確結(jié)論的是:____________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種子培育基地用A,B,C,D四種型號(hào)的小麥種子共2 000粒進(jìn)行發(fā)芽實(shí)驗(yàn),從中選出發(fā)芽率高的種子進(jìn)行推廣.通過(guò)實(shí)驗(yàn)得知,C型號(hào)種子的發(fā)芽率為95﹪,根據(jù)實(shí)驗(yàn)數(shù)據(jù)繪制了圖-1和圖-2兩幅尚不完整的統(tǒng)計(jì)圖.
(1)D型號(hào)種子的粒數(shù)是______;
(2)請(qǐng)你將圖-2的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)通過(guò)計(jì)算說(shuō)明,應(yīng)選哪一個(gè)型號(hào)的種子進(jìn)行推廣;
(4)若將所有已發(fā)芽的種子放到一起,從中隨機(jī)取出一粒,求取到B型號(hào)發(fā)芽種子的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在邊長(zhǎng)為3a+2b的大正方形紙片中,剪掉邊長(zhǎng)2a+b的小正方形,得到圖②,把圖②陰影部分剪下,按照?qǐng)D③拼成一個(gè)長(zhǎng)方形紙片.
(1)求出拼成的長(zhǎng)方形紙片的長(zhǎng)和寬;
(2)把這個(gè)拼成的長(zhǎng)方形紙片的面積加上10a+6b后,就和另一個(gè)長(zhǎng)方形的面積相等.已知另一長(zhǎng)方形的長(zhǎng)為5a+3b,求它的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1與C2上的任一點(diǎn). 當(dāng)a ≤ x ≤ b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱(chēng)這兩個(gè)函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱(chēng)它們?cè)?/span>a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過(guò)構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說(shuō)明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
(3)若函數(shù)y =與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫(xiě)出a的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com