【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑作⊙O,⊙O與AC的公共點為E,連接DE并延長交BC的延長線于點F,BD=BF.
(1)試判斷AC與⊙O的位置關系并說明理由;
(2)若AB=12,BC=6,求⊙O的面積.
【答案】(1)AC與⊙O相切;(2)16.
【解析】
(1)求出OE∥BF推出∠AEO=90,根據(jù)切線的判定推出即可;
(2)證△AOE∽△ABC,得出關于r的方程,求出方程的解即可.
解:(1)AC與⊙O相切.
連接OE,
∵OD=OE,
∴∠ODE=∠OED.
∵BD=BF,
∴∠ODE=∠F.
∴∠OED=∠F.
∴OE∥BF.
∴∠AEO=∠ACB=90°.
∴OE⊥AC.
∵點E為⊙O上一點,
∴AC與⊙O相切;
(2)由(1)知∠AEO=∠ACB,
又∵∠A=∠A,
∴△AOE∽△ABC,
∴=,
設⊙O的半徑為r,則=,解得r=4,
∴⊙O的面積為π×42=16π.
故答案為:(1)AC與⊙O相切;(2)16.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點B將向左滑動多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和正方形BEFG的邊長分別為1和3,點C在邊BG上,線段DF、EG交于點M,連接DE、BM,則△DEG的面積為____,BM=____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點A,PD⊥y軸于點D,交y=的圖象于點B.下面結(jié)論:
①PA與PB始終相等;②△OBP與△OAP的面積始終相等;
③四邊形PAOB的面積不變;④PABD=PBAC.
其中一定正確的是_____(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由甲、乙兩個工程隊承包某校校園綠化工程,甲、乙兩隊單獨完成這項工程所需時間比是3︰2,兩隊合做6天可以完成.
。1)求兩隊單獨完成此項工程各需多少天?
(2)此項工程由甲、乙兩隊合做6天完成任務后,學校付給他們20000元報酬,若
按各自完成的工程量分配這筆錢,問甲、乙兩隊各得到多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與正比例函數(shù)(為常數(shù),且)的圖像都經(jīng)過.
(1)求點的坐標及正比例函數(shù)的表達式;
(2)利用函數(shù)圖像比較和的大小并直接寫出對應的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(1,2)、B(–1,–2)是函數(shù)的圖象上關于原點對稱的兩點,BC∥x軸,AC∥y軸,△ABC的面積記為S,則( )
A. S = 2 B. S = 4 C. S = 8 D. S = 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內(nèi)可售出240套.根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高5元,銷售量相應減少20套.設銷售單價為x(x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關系式.
(2)當銷售單價為多少元時,月銷售額為14000元?
(3)當銷售單價為多少元時,才能在一個月內(nèi)獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com