【題目】如圖,直線l1:y1=2x+1與坐標(biāo)軸交于A,C兩點(diǎn),直線l2: y2=-x-2與坐標(biāo)軸交于B,D兩點(diǎn),兩直線交于P點(diǎn).
(1)求P點(diǎn)的坐標(biāo);
(2)求△APB的面積.
【答案】(1)點(diǎn)P的坐標(biāo)為(-1,-1);(2)S△APB=.
【解析】
(1)聯(lián)立兩個(gè)解析式得到關(guān)于x、y的方程組,解方程組即可求得答案;
(2)先求出A,B的坐標(biāo),再根據(jù)三角形面積公式即可求解.
(1)解方程組得,
,
所以直線l1:y1=2x+1與直線l2: y2=-x-2的交點(diǎn)P的坐標(biāo)為(-1,-1);
(2)當(dāng)x=0時(shí),y1=2x+1=1,
所以A點(diǎn)坐標(biāo)為(0,1),
當(dāng)x=0時(shí),y2=-x-2=-2,
所以B點(diǎn)坐標(biāo)為(0,-2),
所以AB=1-(-2)=3,
所以S△APB==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,4).
(1)求此拋物線的解析式;
(2)設(shè)點(diǎn)P(2,n)在此拋物線上,AP交y軸于點(diǎn)E,連接BE,BP,請(qǐng)判斷△BEP的形狀,并說(shuō)明理由;
(3)設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)D,在線段BC上是否存在點(diǎn)Q,使得△DBQ成為等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 y=2x+4 與 x 軸相交于點(diǎn) A,與 y 軸相交于點(diǎn) B.
(1)求 A,B 兩點(diǎn)的坐標(biāo);
(2)過(guò) B 點(diǎn)作直線 BP 與 x 軸相交于 P,且使 OP=2OA,求直線 BP 的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=3,BC=4.點(diǎn)P在線段AB或線段AD上,點(diǎn)Q中線段BC上,沿直線PQ將矩形折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E.
(1)如圖1,點(diǎn)P、點(diǎn)E在線段AD上,點(diǎn)Q在線段BC上,連接BP、EQ.
①求證:四邊形PBQE是菱形.
②四邊形PBQE是菱形時(shí),AP的取值范圍是 .
(2)如圖2,點(diǎn)P在線段AB上,點(diǎn)Q在線段AD上,點(diǎn)E在線段AD上,若AE=,求折痕PQ的長(zhǎng).
(3)點(diǎn)P在線段AB,AP=2,點(diǎn)Q在線段BC上,連AE、CE.請(qǐng)直接寫出四邊形AECD的面積的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,若動(dòng)點(diǎn)從點(diǎn)開始,按的路徑運(yùn)動(dòng),且速度為每秒,設(shè)出發(fā)的時(shí)間為秒.
(1)當(dāng)為幾秒時(shí),平分;
(2)問為何值時(shí),為等腰三角形?
(3)另有一點(diǎn),從點(diǎn)開始,按的路徑運(yùn)動(dòng),且速度為每秒,若兩點(diǎn)同時(shí)出發(fā),當(dāng)中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng). 當(dāng)為何值時(shí),直線把的周長(zhǎng)分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過(guò)點(diǎn)A(2,6),B(n,-3).求:
(1)m,n的值;
(2)△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對(duì)稱軸和頂點(diǎn)坐標(biāo).
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)△PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L(zhǎng)2
①直接寫出y隨x的增大而增大時(shí)x的取值范圍;
②直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,下列幾個(gè)結(jié)論:
①對(duì)稱軸為x=2;②當(dāng)y≤0時(shí),x<0或x>4;③函數(shù)解析式為y=﹣x(x+4);④當(dāng)x≤0時(shí),y隨x的增大而增大.其中正確的結(jié)論有_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com