【題目】下列關于幾何畫圖的語句,正確的是(

A.延長射線AB到點C,使BC=2AB

B.P在線段AB上,點Q在直線AB的反向延長線上

C.將射線OA繞點O旋轉(zhuǎn),當終止位置OB與起始位置OA成一條直線時形成平角

D.已知線段,若在同一直線上作線段AB=, BC=,則線段AC=

【答案】C

【解析】

根據(jù)射線、直線、平角的定義以及線段的和差可判斷出正確答案.

A.延長射線AB到點C,使BC=2AB,說法錯誤,不能延長射線;

B.點P在線段AB上,點Q在直線AB的反向延長線上,說法錯誤,直線本身是向兩方無限延長的,不能說延長直線;

C.將射線OA繞點O旋轉(zhuǎn),當終止位置OB與起始位置OA成一條直線時形成平角,說法正確;

D.已知線段a、b,若在同一直線上作線段AB=a,BC=b,則線段AC=a+ba-b.原說法錯誤.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊長6米寬4米的地毯,為了美觀設計了兩橫兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個地毯面積的

1)求配色條紋的寬度;

2)如果地毯配色條紋部分每平方米造價200元,其余部分每平方米造價100元,求地毯的總造價.(供參考數(shù)據(jù):1052=11025,1152=132251252=15625

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點BAD邊上的點K重合,EG為折痕;點CAD邊上的點K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車間的甲、乙兩名工人分別同時生產(chǎn)同種零件,他們一天生產(chǎn)零件y(個)與生產(chǎn)時間t(小時)的關系如圖所示.

(1)根據(jù)圖象回答:

①甲、乙中,誰先完成一天的生產(chǎn)任務;在生產(chǎn)過程中,誰因機器故障停止生產(chǎn)多少小時;

②當t等于多少時,甲、乙所生產(chǎn)的零件個數(shù)相等;

(2)誰在哪一段時間內(nèi)的生產(chǎn)速度最快?求該段時間內(nèi),他每小時生產(chǎn)零件的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D,E分別是ABC的邊BABC延長線上的點,作∠DAC的平分線AF,若AFBC

1)求證:ABC是等腰三角形;

2)作∠ACE的平分線交AF于點G,若∠B40°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點Cm,3).

1)求m的值及l2的解析式;

2)求SAOCSBOC的值;

3)一次函數(shù)ykx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題.

1)某制藥廠制造一批藥品,如用舊工藝,則廢水排量要比環(huán)保限制的最大量還多200t;如果用新工藝,則廢水排量比環(huán)保限制的最大量少100t;新、舊工藝的廢水排量之比為25,兩種工藝的廢水排量各是多少?

2)元旦期間,曉睛駕車從珠海出發(fā)到香港,去時在港珠澳大橋上用了60分鐘,返回時平均速度提高了5千米/小時,在港珠澳大橋上的用時比去時少用了5分鐘,求港珠澳大橋的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,BDAD,延長AD至點E,使DAE的中點,連接BECEBECD交于點F.

(1)求證:四邊形BDEC是矩形;

(2)若AB=6,AD=3,求矩形BDEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB6 cm,BC8 cm,點EBC邊上一點,連接AE,并將AEB沿AE折疊,得到AEB′,以CE,B′為頂點的三角形是直角三角形時,BE的長為____cm.

查看答案和解析>>

同步練習冊答案