【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于AB兩點(diǎn),正比例函數(shù)的圖象l2l1交于點(diǎn)Cm,3).

1)求m的值及l2的解析式;

2)求SAOCSBOC的值;

3)一次函數(shù)ykx+1的圖象為l3,且11,l2,l3不能?chē)扇切危苯訉?xiě)出k的值.

【答案】1l2的解析式為yx;(25;(3或﹣

【解析】

1)先求得點(diǎn)的坐標(biāo),再運(yùn)用待定系數(shù)法求出的解析式;(2)過(guò)過(guò)CCDAOD CEBOE,則CD3,CE4,再根據(jù)A10,0),B0,5)可得AO10,BO5進(jìn)而得出SAOCSBOC的值;(3)分三種情況:當(dāng)l3經(jīng)過(guò)點(diǎn)C4,3)時(shí),k;當(dāng)l2l3平行時(shí),k;當(dāng)11,l3平行時(shí),k=﹣,于是求得結(jié)論.

解:(1)把Cm3)代入一次函數(shù)y=﹣x+5,可得

3=﹣m+5,

解得m4,

C4,3),

設(shè)l2的解析式為yax,則34a

解得a,

l2的解析式為yx

2)如圖,過(guò)CCDAOD,

CEBOE,則CD3,CE4,

y=﹣x+5,令x0,則y5;令y0,則x10,

A10,0),B05),

AO10BO5,

SAOCSBOC×10×3×5×415105;

3)一次函數(shù)ykx+1的圖象為l3,且11,l2,l3不能?chē)扇切危?/span>

∴當(dāng)l3經(jīng)過(guò)點(diǎn)C4,3)時(shí),k

當(dāng)l2,l3平行時(shí),k;

當(dāng)11,l3平行時(shí),k=﹣;

k的值為或﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一家苗圃計(jì)劃種植桃樹(shù)和柏樹(shù).根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植桃樹(shù)的利潤(rùn)y1(萬(wàn)元)與投資成本x(萬(wàn)元)滿(mǎn)足如圖①所示的二次函數(shù)y1=ax2;種植柏樹(shù)的利潤(rùn)y2(萬(wàn)元)與投資成本x(萬(wàn)元)滿(mǎn)足如圖②所示的正比例函數(shù)y2=kx

1)分別求出利潤(rùn)y1(萬(wàn)元)和利潤(rùn)y2(萬(wàn)元)關(guān)于投資成本x(萬(wàn)元)的函數(shù)關(guān)系式;

2)如果這家苗圃投入10萬(wàn)元資金種植桃樹(shù)和柏樹(shù),苗圃至少能獲得多少利潤(rùn)?若要使這家苗圃獲得5萬(wàn)元利潤(rùn),資金投入如何分配(桃樹(shù)和柏樹(shù)都要種植)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格圖中有ABC,建立平面直角坐標(biāo)系后,點(diǎn)O的坐標(biāo)是(0,0).

(1)以O(shè)為位似中心,作A′B′C′∽△ABC,相似比為1:2,且保證A′B′C′在第三象限;

(2)點(diǎn)B′的坐標(biāo)為( );

(3)若線(xiàn)段BC上有一點(diǎn)D,它的坐標(biāo)為(a,b),那么它的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張先生今年7月份第一個(gè)星期的星期五以每股(份)25元的價(jià)格買(mǎi)進(jìn)某種金融理財(cái)產(chǎn)品共2000股(買(mǎi)入時(shí)免收手續(xù)費(fèi)),該理財(cái)產(chǎn)品在第二個(gè)星期的五個(gè)交易日中,每股的漲跌情況如下表(表格中數(shù)據(jù)表示比前一交易日漲或跌多少元) (單位:元):

星期

每股漲跌額

(1)寫(xiě)出第二個(gè)星期每日每股理財(cái)產(chǎn)品的收盤(pán)價(jià)(即每日最后時(shí)刻的成交價(jià));

(2)已知理財(cái)產(chǎn)品賣(mài)出時(shí),交易所需收取千分之三的手續(xù)費(fèi),如果張先生在第二個(gè)星期的星期五交易結(jié)束前將全部產(chǎn)品賣(mài)出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于幾何畫(huà)圖的語(yǔ)句,正確的是(

A.延長(zhǎng)射線(xiàn)AB到點(diǎn)C,使BC=2AB

B.點(diǎn)P在線(xiàn)段AB上,點(diǎn)Q在直線(xiàn)AB的反向延長(zhǎng)線(xiàn)上

C.將射線(xiàn)OA繞點(diǎn)O旋轉(zhuǎn),當(dāng)終止位置OB與起始位置OA成一條直線(xiàn)時(shí)形成平角

D.已知線(xiàn)段,若在同一直線(xiàn)上作線(xiàn)段AB=, BC=,則線(xiàn)段AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)如圖,已知拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)E,D是拋物線(xiàn)的頂點(diǎn).

(1)求此拋物線(xiàn)的解析式;

(2)直接寫(xiě)出點(diǎn)C和點(diǎn)D的坐標(biāo);

(3)若點(diǎn)P在第一象限內(nèi)的拋物線(xiàn)上,且S△ABP=4S△COE,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,D是邊AC的中點(diǎn),CE⊥BDAB于點(diǎn)E.

(1)求tan∠ACE的值;

(2)求AE:EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1883年,德國(guó)數(shù)學(xué)家格奧爾格·康托爾引入位于一條線(xiàn)段上的一些點(diǎn)的集合,它的做法如下:

取一條長(zhǎng)度為1的線(xiàn)段,將它三等分,去掉中間一段,余下兩條線(xiàn)段,達(dá)到第1階段;將剩下的兩條線(xiàn)段再分別三等分,各去掉中間一段,余下四條線(xiàn)段,達(dá)到第2階段;再將剩四條線(xiàn)段,分別三等分,分別去掉中間一段,余下八條線(xiàn)段,達(dá)到第3階段:;這樣的操作一直繼續(xù)下去,在不斷分割舍棄過(guò)程中,所形成的線(xiàn)段數(shù)目越來(lái)越多,把這種分形,稱(chēng)作康托爾點(diǎn)集,如圖是康托爾點(diǎn)集的最初幾個(gè)階段,當(dāng)達(dá)到第5個(gè)階段時(shí),余下的線(xiàn)段的長(zhǎng)度之和為________;當(dāng)達(dá)到第個(gè)階段時(shí)(為正整數(shù)),余下的線(xiàn)段的長(zhǎng)度之和為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCA′B′C′關(guān)于點(diǎn)P位似,且頂點(diǎn)都在格點(diǎn)上.

(1)在圖上找出位似中心P的位置,并直接寫(xiě)出點(diǎn)P的坐標(biāo)是

(2)寫(xiě)出ABCA′B′C′的面積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案