質(zhì)地均勻的正四面體骰子的四個面上分別寫有數(shù)字:2,3,4,5.投擲這個正四面體兩次,則第一次底面上的數(shù)字能夠整除第二次底面上的數(shù)字的概率是   
【答案】分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.
解答:解:由樹狀圖
可知共有4×4=16種可能,第一次底面上的數(shù)字能夠整除第二次底面上的數(shù)字的有5種,所以概率是
點(diǎn)評:畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

質(zhì)地均勻的正四面體骰子的四個面上分別寫有數(shù)字:2,3,4,5.投擲這個正四面體兩次,則第一次底面上的數(shù)字能夠整除第二次底面上的數(shù)字的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

質(zhì)地均勻的正四面體骰子的四個面上分別寫有數(shù)字2,3,4,5,投擲這個正四面體兩次,則第一次底面上的數(shù)字能夠整除第二次底面上的數(shù)字的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線C1:y=a(x-1)2+4與直線C2:y=x+b相交于點(diǎn)A(3,精英家教網(wǎng)0)和點(diǎn)B.
(1)求a、b的值;
(2)若P(t,y1),Q(2,y2)是拋物線C1上的兩點(diǎn),且y1<y2,求實(shí)數(shù)t的取值范圍;
(3)如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n) 落在圖1中拋物線C1與直線C2圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,有一游戲棋盤和一個質(zhì)地均勻的正四面體骰子(各面依次標(biāo)有1,2,3,4四個數(shù)字).游戲規(guī)則是游戲者每擲一次骰子,棋子按著地一面所示的數(shù)字前進(jìn)相應(yīng)的格數(shù).例如:若棋子位于A處,游戲者所擲骰子著地一面所示數(shù)字為3,則棋子由A處前進(jìn)3個方格到達(dá)B處.請用畫樹形圖法(或列表法)求擲骰子兩次后,棋子恰好由A處前進(jìn)6個方格到達(dá)C處的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,拋物線y=-
1
4
x2+
1
4
x+3
與直線y=-
1
4
x-
3
4
交于A、B兩點(diǎn).如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo),則點(diǎn)P(m,n)落在如圖1中的拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是
7
16
7
16

查看答案和解析>>

同步練習(xí)冊答案