【題目】如圖,已知第一象限的點(diǎn)A在反比例函數(shù)y上,過點(diǎn)AABAOx軸于點(diǎn)B,∠AOB30°,將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)120°,點(diǎn)B的對應(yīng)點(diǎn)B恰好落在反比例函數(shù)y上,則k的值為(  )

A.4B.C.2D.

【答案】B

【解析】

過點(diǎn)B軸的垂線垂足為C,過點(diǎn)軸的垂線垂足為D,設(shè)點(diǎn)的坐標(biāo)為根據(jù)反比例函數(shù)的解析式和含角的直角三角形得出點(diǎn)的坐標(biāo),再通過解特殊角度直角三角形得出的值,再根據(jù)旋轉(zhuǎn)得出,然后證明,根據(jù)全等得出的值,即可得出點(diǎn)B的坐標(biāo),把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式即可求得k的值.

過點(diǎn)B軸的垂線垂足為C,過點(diǎn)軸的垂線垂足為D,如下圖所示:

設(shè)點(diǎn)的坐標(biāo)為,

又∵

解得

∵點(diǎn)在第一象限

不符合題意舍去,

∴點(diǎn)的坐標(biāo)為,

∵△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)120°

∵點(diǎn)B旋轉(zhuǎn)后落在第二象限

∴點(diǎn)B的坐標(biāo)為

解得:

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角標(biāo)系中,拋物線Cyx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)Dy軸正半軸上一點(diǎn).且滿足ODOC,連接BD

1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PB,PD,當(dāng)SPBD最大時,連接AP,以PB為邊向上作正BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值

2)如圖2,在第(1)問的條件下,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為E,將BOE繞著點(diǎn)A逆時針旋轉(zhuǎn)60°得到B′O′E′,將拋物線y沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點(diǎn)E,此時拋物線C′x軸的右交點(diǎn)記為點(diǎn)F,連接E′FB′F,R為線段E’F上的一點(diǎn),連接B′R,將B′E′R沿著B′R翻折后與B′E′F重合部分記為B′RT,在平面內(nèi)找一個點(diǎn)S,使得以B′、R、T、S為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD為正方形,∠CAB的角平分線交BC于點(diǎn)E,過點(diǎn)CCFAEAE的延長線于點(diǎn)G,CFAB的延長線交于點(diǎn)F,連接BG、DG、與AC相交于點(diǎn)H,則下列結(jié)論:①ABECBF;②GF=CG;③BGDG;④,其中正確的是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD//CO

1)求證:△ADB∽△OBC

2)若AB=2,BC=,求AD的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級表演經(jīng)典誦讀民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對每屆藝術(shù)節(jié)表演這些節(jié)目的班級數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)五屆藝術(shù)節(jié)共有________個班級表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級數(shù)的扇形圓心角的度數(shù)為________;

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀、民樂演奏歌曲聯(lián)唱、民族舞蹈分別用,,表示).利用樹狀圖或表格求出該班選擇兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作發(fā)現(xiàn):如圖,已知ABCADE均為等腰三角形,ABAC,ADAE,將這兩個三角形放置在一起,使點(diǎn)B,D,E在同一直線上,連接CE

1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED55°,求證:BAD≌△CAE

2)在(1)的條件下,求∠BEC的度數(shù);

拓廣探索:(3)如圖2,若∠CAB=∠EAD120°,BD4,CFBCEBE邊上的高,請直接寫出EF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】攀枝花得天獨(dú)厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠(yuǎn)銷北上廣等大城市.某水果店購進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價為10/千克,售價不低于15/千克,且不超過40/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.

銷售量(千克)

32.5

35

35.5

38

售價(元/千克)

27.5

25

24.5

22

1)某天這種芒果售價為28/千克.求當(dāng)天該芒果的銷售量

2)設(shè)某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C03),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DCBC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

同步練習(xí)冊答案