【題目】如圖,點(diǎn)D,E,F分別在等邊三角形ABC的三邊上,且DE⊥AB,EF⊥BC,FD⊥AC,過點(diǎn)F作FH⊥AB于H,則的值為_________.
【答案】
【解析】
設(shè)AH為x,利用等邊三角形的性質(zhì)和直角三角形中邊角關(guān)系,求證三角形DEF也為等邊三角形,將BC用x表示出來,然后求解即可.
∵△ABC是等邊三角形,
∴AB=AC=BC,
∠A=∠B=∠C=60°.
∵DE⊥AB,EF⊥BC,F(xiàn)D⊥AC,
∴∠AFD=∠BDE=∠FEC=90°
∠ADF=∠BED=∠CFE=90°-60°=30°
∴∠DEF=∠DFE=∠EDF=180°-30°-90°=60°
故△DEF是等邊三角形
∴DE=DF=EF
又∵∠A=∠B=∠C, ∠AFD=∠BDE=∠FEC
∴△ADF≌△BED≌△CEF
∴AD=BE,AF=CF
設(shè)AH為x,則AF=2x
在Rt△ADF中,∠ADF=30°,
∴AD=4x
∴BE=4x,CF=2x
BC=2x+4x=6x
∴=
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點(diǎn)A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.
(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問動(dòng)點(diǎn)M,N在移動(dòng)的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)分別落在邊長為1的正方形格上,
(1)分別寫出A、B、C三點(diǎn)坐標(biāo);
(2)△DEF可以看作是△ABC經(jīng)過若干次的圖形變化(軸對稱、平移)得到的,寫出一種由△ABC得到△DEF的過程,并體現(xiàn)在坐標(biāo)系中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,P是AB邊上的一個(gè)動(dòng)點(diǎn),由A向B運(yùn)動(dòng)(P不與A、B重合),Q是BC延長線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由C向BC延長線方向運(yùn)動(dòng)(Q不與C重合),
(1)當(dāng)∠BPQ=90°時(shí),求AP的長;
(2)過P作PE⊥AC于點(diǎn)E,連結(jié)PQ交AC于D,在點(diǎn)P、Q的運(yùn)動(dòng)過程中,線段DE的長是否發(fā)生變化?若不變,求出DE的長度;若變化,求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D在BC邊上,點(diǎn)E在AB的延長線上,將DE繞D點(diǎn)順時(shí)針旋轉(zhuǎn)120°得到DF.
(1)如圖1,若點(diǎn)F恰好落在AC邊上,求證:點(diǎn)D是BC的中點(diǎn);
(2)如圖2,在(1)的條件下,若=45°,連接AD,求證:;
(3)如圖3,若,連CF,當(dāng)CF取最小值時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點(diǎn)D交OB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y1=(x>0)的圖象經(jīng)過菱形對角線的交點(diǎn)A,且交另一邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).
(1)求反比例的函數(shù)的解析式;
(2)設(shè)經(jīng)過B,C兩點(diǎn)的一次函數(shù)的解析式為y2=mx+b,求y1<y2的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y1=kx+b經(jīng)過點(diǎn)P(2,2)和點(diǎn)Q(0,﹣2),與x軸交于點(diǎn)A,與直線y2=mx+n交于點(diǎn)P.
(1)求出直線y1=kx+b的解析式;
(2)求出點(diǎn)A的坐標(biāo);
(3)直線y2=mx+n繞著點(diǎn)P任意旋轉(zhuǎn),與x軸交于點(diǎn)B,當(dāng)△PAB是等腰三角形時(shí),點(diǎn)B有幾種位置?請你分別求出點(diǎn)B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com