如圖所示,△ABC中,D是BC邊上中點(diǎn),AE是∠BAC的平分線,CE⊥AE,EF∥BC交AB于點(diǎn)F,
求證:四邊形BDEF是平行四邊形.
考點(diǎn):平行四邊形的判定
專題:證明題
分析:延長(zhǎng)CE交AB于M,證兩三角形全等,推出E為CM中點(diǎn),根據(jù)三角形中位線推出DE∥AB,根據(jù)平行四邊形的判定推出即可.
解答:證明:
延長(zhǎng)CE交AB于M,
∵AE⊥CE,
∴∠AEC=∠AEM=90°,
∵AE是∠BAC的平分線,
∴∠MAE=∠CAE,
在△MAE和△CAE中,
∠AEM=∠AEC
AE=AE
∠MAE=∠CAE
,
∴△MAE≌△CAE(ASA),
∴CE=EM,
∵D為BC中點(diǎn),
∴DE∥AB,
∵EF∥BC,
∴四邊形BDEF是平行四邊形.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,三角形的中位線,平行四邊形的判定的應(yīng)用,注意:有兩組對(duì)邊分別平行的四邊形是平行四邊形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)y=mxm2-m-4+2x的圖象開(kāi)口向下,則一次函數(shù)y=(m+3)x-m的圖象一定不經(jīng)過(guò)的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

求方程x2+xy+y2=2010的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,四邊形ABCD是菱形,∠B是銳角,AF⊥BC于點(diǎn)F,CH⊥AD于點(diǎn)H,在AB邊上取點(diǎn)E,使得AE=AH,在CD邊上取點(diǎn)G,使得CG=CF,連接EF、FG、GH、HE.
(1)求證:四邊形EFGH是矩形;
(2)當(dāng)∠B為多少度時(shí),四邊形EFGH是正方形?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

四邊形ABCD是正方形,E在正方形外,CE∥BD,EB=BD,BE交DC于F,求證:∠BEC=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某機(jī)械研究所發(fā)出一件新產(chǎn)品,計(jì)劃生產(chǎn)1200件新產(chǎn)品投放市場(chǎng)試銷.準(zhǔn)備聘請(qǐng)都具備加工能力的甲、乙兩人生產(chǎn).經(jīng)過(guò)調(diào)查,獲得如下信息:
信息一:甲單獨(dú)加工完成這批產(chǎn)品比乙單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙每天加工的數(shù)量是甲每天加工數(shù)量的1.5倍.
(1)甲每天可加工這種產(chǎn)品多少件?
(2)為及早開(kāi)拓市場(chǎng),公司計(jì)劃這批產(chǎn)品生產(chǎn)時(shí)間不超過(guò)15天,決定聘請(qǐng)甲、乙兩人同時(shí)加工.兩人共同加工完若干件后,乙因有事退出,剩下的任務(wù)由甲繼續(xù)單獨(dú)完成.求兩人同時(shí)至少要加工完多少件后,才能達(dá)到上述預(yù)計(jì)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

李亮正沿著一條東西方向的小路騎自行車由東向西駛?cè)ィ?dāng)李亮到達(dá)C點(diǎn)時(shí),張明在他南偏西24.5°方向的點(diǎn)B植樹(shù),而大華恰在她的正北方向的點(diǎn)A處植樹(shù);李亮繼續(xù)行駛1200m到達(dá)點(diǎn)D,測(cè)得張明在他的南偏東41°方向,大華在他的北偏東49°方向. 求:
(1)∠ADB的度數(shù);
(2)當(dāng)李亮到達(dá)點(diǎn)D處時(shí),他與張明之間的距離;
(3)大華與張明所植的樹(shù)相距多遠(yuǎn)?(提示:41°的余弦值≈
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,BC:AC=1:2,AB=5,則斜邊AB上的高為( 。
A、
15
3
B、2
C、1
D、
2
15
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若方程(a+2)xa2-5x+3=0為一元一次方程,且點(diǎn)A(2a+a2,a)在第三象限,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案