【題目】如圖,△ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A,B兩點(diǎn)出發(fā),分別在AB,BC邊上勻速移動(dòng),它們的速度分別為=2cm/s,=1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示BP=______,BQ=_______;
(2)當(dāng)t為何值時(shí),△BPQ為等邊三角形?
(3)當(dāng)t為何值時(shí),△BPQ為直角三角形?
【答案】(1)6-2t,t.(2)當(dāng)t=2s時(shí)△PBQ為等邊三角形;(3)當(dāng)t為1.5s或2.4s時(shí)△PBQ為直角三角形.
【解析】
(1)由題意可知AP=2t,BQ=t.再根據(jù)線段的和差關(guān)系即可求解;
(2)當(dāng)△PBQ為等邊三角形時(shí),則有BP=BQ,即6-2t=t,可求得t;
(3)當(dāng)PQ⊥BQ時(shí),在Rt△PBQ中,BP=2BQ,可得6-2t=2t;當(dāng)PQ⊥BP時(shí),可得BQ=2BP,可得2t=2(6-2t)分別求得t的值即可.
解:(1)依題意,得:AP=2t,BQ=t.
∵AB=6,
∴BP=AB-AP=6-2t.
故答案為6-2t,t.
由(1)可知AP=2t,BQ=t,則BP=AB-AP=6-2t,
∵△PBQ為等邊三角形,
∴BP=BQ,
即6-2t=t,
解得t=2,
∴當(dāng)t=2s時(shí)△PBQ為等邊三角形;
(3)①當(dāng)PQ⊥BQ時(shí),
∵∠B=60°,
∴∠BPQ=30°,
∴在Rt△PBQ中,BP=2BQ,
即6-2t=2t,
解得t=1.5;
②當(dāng)PQ⊥BP時(shí),同理可得BQ=2BP,即t=2(6-2t),解得t=2.4,
綜上可知當(dāng)t為1.5s或2.4s時(shí)△PBQ為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題.
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知1號(hào)、4號(hào)兩個(gè)正方形的面積和為10, 2號(hào)、3號(hào)兩個(gè)正方形的面積和為7,則a,b,c三個(gè)方形的面積和為( )
A. 17 B. 27 C. 24 D. 34
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車4S店銷售某種型號(hào)的汽車,每輛進(jìn)貨價(jià)為15萬(wàn)元,該店經(jīng)過(guò)一段時(shí)間的市場(chǎng)調(diào)研發(fā)現(xiàn):當(dāng)銷售價(jià)為25萬(wàn)元時(shí),平均每周能售出8輛,而當(dāng)銷售價(jià)每降低0.5萬(wàn)元時(shí),平均每周能多售出1輛.該4S店要想平均每周的銷售利潤(rùn)為90萬(wàn)元,并且使成本盡可能的低,則每輛汽車的定價(jià)應(yīng)為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,,.如果點(diǎn)由出發(fā)沿方向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)由出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),它們的速度均為.連接,設(shè)運(yùn)動(dòng)的時(shí)間為(單位:).解答下列問(wèn)題:
當(dāng)為何值時(shí)平行于;
當(dāng)為何值時(shí),與相似?
是否存在某時(shí)刻,使線段恰好把的周長(zhǎng)平分?若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.
是否存在某時(shí)刻,使線段恰好把的面積平分?若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形DEF中,∠DFE=90°在直角三角形外面作正方形ABDE,CDFI,EFGH的面積分別為25,9,16.△AEH,△BDC,△GFI的面積分別為S1,S2,S3,則S1+S2+S3=( )
A.18B.21C.23.5D.26
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:選用同一長(zhǎng)度單位量得兩條線段、的長(zhǎng)度分別是,,那么就說(shuō)兩條線段的比:
,如果把表示成比值,那么,或.請(qǐng)完成以下問(wèn)題:
四條線段,,,中,如果________,那么這四條線段,,,叫做成比例線段.
已知,那么________,________
如果,那么成立嗎?請(qǐng)用兩種方法說(shuō)明其中的理由.
如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG的邊長(zhǎng)分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),
(1)猜想BE與DG的關(guān)系,并證明你的結(jié)論;
(2)用含a、b的式子表示DE2+BG2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等邊三角形,點(diǎn)為直線上的一動(dòng)點(diǎn)(點(diǎn)不與、重合),以為邊作菱形(、、、按逆時(shí)針排列),使,連接.
如圖,當(dāng)點(diǎn)在邊上時(shí),求證:①;②;
如圖,當(dāng)點(diǎn)在邊的延長(zhǎng)線上且其他條件不變時(shí),結(jié)論是否成立?若不成立,請(qǐng)寫出、、之間存在的數(shù)量關(guān)系,并說(shuō)明理由;
如圖,當(dāng)點(diǎn)在邊的延長(zhǎng)線上且其他條件不變時(shí),補(bǔ)全圖形,并直接寫出、、之間存在的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com