【題目】(1)計算
① 8+(-1)-6-(-1.25);
②()×(﹣36);
③﹣24+ 6×(﹣)+(﹣6)× ;
④ 5+15÷(-3)2×[-(-1)4]-2.
(2)先化簡,再求值:求 的值,其中x﹦,y = -1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列圖案均是由長度相同的火柴按一定的規(guī)律拼搭而成,圍成的每個小正方形面積為1.第一個圖案面積為2,第二個圖案面積為4,第三個圖案面積為7,…依此規(guī)律,第8個圖案面積為( )
A. 34 B. 35 C. 36 D. 37
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一牧童在A處牧馬,牧童家在B處,A、B距河岸的距離AC、BD的長分別為500米和700米,且C、D兩地的距離為1600米,天黑前牧童從A點將馬牽引到河邊去飲水后再趕回家,那么牧童至少要走的距離是( )
A. 2600米B. 2300米C. 2000米D. 1200米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于O點、A點,B為拋物線上一點,C為y軸上一點,連接BC,且BC//OA,已知點O(0,0),A(6,0),B(3,m),AB=.
(1)求B點坐標(biāo)及拋物線的解析式.,
(2)M是CB上一點,過點M作y軸的平行線交拋物線于點E,求DE的最大值;
(3)坐標(biāo)平面內(nèi)是否存在一點F,使得以C、B、D、F為頂點的四邊形是菱形?若存在,求出符合條件的點F坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次課題學(xué)習(xí)中,老師讓同學(xué)們合作編題,某學(xué)習(xí)小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請你來解一解:
如圖,將矩形的四邊、、、分別延長至、、、,使得,,連接,,,.
(1) 求證:四邊形為平行四邊形;
(2) 若矩形是邊長為1的正方形,且,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】糧庫6天內(nèi)糧食進出庫的噸數(shù)如下(“+”表示進庫“-”表示出庫)
+25, +8,-12,+34,-36,-22.
(1)經(jīng)過這6天,糧庫里的糧食是增多還是減少了?通過計算說明.
(2)經(jīng)過這6天,倉庫管理員結(jié)算發(fā)現(xiàn)庫里還存480噸糧,那么6天前庫里存糧多少噸?
(3)如果進出的裝卸費都是每噸5元,那么這6天要付多少裝卸費?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為( )
A. ①②④⑤⑥B. ①②④⑤
C. ②④⑤D. ②④⑤⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE=2,AD=8,DE平分∠ADC,則平行四邊形的周長為( 。
A. 14B. 24C. 20D. 28
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com