【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c與直線y=x﹣3分別交x軸、y軸上的B、C兩點(diǎn),設(shè)該拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,頂點(diǎn)為點(diǎn)D,連接CD交x軸于點(diǎn)E.
(1)求該拋物線的表達(dá)式及點(diǎn)D的坐標(biāo);
(2)求∠DCB的正切值;
(3)如果點(diǎn)F在y軸上,且∠FBC=∠DBA+∠DCB,求點(diǎn)F的坐標(biāo).
【答案】(1),D(4,1);(2);(3)點(diǎn)F坐標(biāo)為(0,1)或(0,﹣18).
【解析】
(1)y=x﹣3,令y=0,則x=6,令x=0,則y=﹣3,求出點(diǎn)B、C的坐標(biāo),將點(diǎn)B、C坐標(biāo)代入拋物線y=﹣x2+bx+c,即可求解;
(2)求出則點(diǎn)E(3,0),EH=EBsin∠OBC=,CE=3,則CH=,即可求解;
(3)分點(diǎn)F在y軸負(fù)半軸和在y軸正半軸兩種情況,分別求解即可.
(1)y=x﹣3,令y=0,則x=6,令x=0,則y=﹣3,
則點(diǎn)B、C的坐標(biāo)分別為(6,0)、(0,﹣3),則c=﹣3,
將點(diǎn)B坐標(biāo)代入拋物線y=﹣x2+bx﹣3得:0=﹣×36+6b﹣3,解得:b=2,
故拋物線的表達(dá)式為:y=﹣x2+2x﹣3,令y=0,則x=6或2,
即點(diǎn)A(2,0),則點(diǎn)D(4,1);
(2)過點(diǎn)E作EH⊥BC交于點(diǎn)H,
C、D的坐標(biāo)分別為:(0,﹣3)、(4,1),
直線CD的表達(dá)式為:y=x﹣3,則點(diǎn)E(3,0),
tan∠OBC=,則sin∠OBC=,
則EH=EBsin∠OBC=,
CE=3,則CH=,
則tan∠DCB=;
(3)點(diǎn)A、B、C、D、E的坐標(biāo)分別為(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),
則BC=3,
∵OE=OC,∴∠AEC=45°,
tan∠DBE==,
故:∠DBE=∠OBC,
則∠FBC=∠DBA+∠DCB=∠AEC=45°,
①當(dāng)點(diǎn)F在y軸負(fù)半軸時(shí),
過點(diǎn)F作FG⊥BG交BC的延長線與點(diǎn)G,
則∠GFC=∠OBC=α,
設(shè):GF=2m,則CG=GFtanα=m,
∵∠CBF=45°,∴BG=GF,
即:3+m=2m,解得:m=3,
CF==m=15,
故點(diǎn)F(0,﹣18);
②當(dāng)點(diǎn)F在y軸正半軸時(shí),
同理可得:點(diǎn)F(0,1);
故:點(diǎn)F坐標(biāo)為(0,1)或(0,﹣18).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+1與反比例函數(shù)y=(x<0)的圖象交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,且S△AOB=1,則反比例函數(shù)解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為圓上(除A、B外)一動(dòng)點(diǎn),∠ACB的角平分線交⊙O于D,若AC=8,BC=6,則BD的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.
(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P在第四象限內(nèi)的拋物線上,過動(dòng)點(diǎn)P作x軸的垂線交直線AC于點(diǎn)D,交x軸于點(diǎn)E,垂足為E,求線段PD的長,當(dāng)線段PD最長時(shí),求出點(diǎn)P的坐標(biāo);
(3)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=AC,E是邊BC上的點(diǎn),且∠AED=∠CAD,DE交AC于點(diǎn)F.
(1)求證:△ABE∽△DAF;
(2)當(dāng)ACFC=AEEC時(shí),求證:AD=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)九年級(jí)某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說法錯(cuò)誤的是( )
A.平均數(shù)是6
B.中位數(shù)是6.5
C.眾數(shù)是7
D.平均每周鍛煉超過6小時(shí)的人數(shù)占該班人數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O與CD切于點(diǎn)E,AD交⊙O于點(diǎn)F.
(1)求證:∠ABE=45°;
(2)連接CF,若CE=2DE,求tan∠DFC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)“切實(shí)減輕學(xué)生課業(yè)負(fù)擔(dān)”是我市作業(yè)改革的一項(xiàng)重要舉措.某中學(xué)為了解本校學(xué)生平均每天的課外作業(yè)時(shí)間,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個(gè)等級(jí).A:1小時(shí)以內(nèi),B:1小時(shí)-1.5小時(shí),C:1.5小時(shí)-2小時(shí),D:小時(shí)以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了_________名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)表示等級(jí)A的扇形圓心角的度數(shù)是____________;
(4)在此次問卷調(diào)查中,甲、乙兩班各有2人平均每天課外作業(yè)時(shí)間都是2小時(shí)以上,從這4人中任選2人去參加座談,用列表或樹狀圖的方法求選出的2人來自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com