【題目】已知關(guān)于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0)
(1)求證:無論m為任何非0實(shí)數(shù),此方程總有兩個實(shí)數(shù)根.
(2)若拋物線y=mx2+(1﹣5m)x﹣5(m≠0)與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且|x1﹣x2|=6,求m的值.
【答案】(1)詳見解析;(2)m=或m=1.
【解析】
(1)根據(jù)一元二次方程根的判別式,利用平方的非負(fù)數(shù)性質(zhì)即可得答案;(2)解方程mx2+(1﹣5m)x﹣5=0,可用m表示出x1、x2,根據(jù)|x1﹣x2|=6即可得答案.
(1)△=b2﹣4ac=(1﹣5m)2+20m=1+25m2>0,
∴無論m為任何非0實(shí)數(shù),此方程總有兩個實(shí)數(shù)根.
(2)當(dāng)y=0時,mx2+(1﹣5m)x﹣5=0,
∴(mx+1)(x-5)=0,
∴x1=,x2=5,
∵|x1﹣x2|=6,
∴=6,
∴-5=6或-5=-6,
解得:m=或m=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料:思考的同學(xué)小斌在解決連比等式問題:“已知正數(shù),,滿足,求的值”時,采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問題.過程如下:
解;設(shè),則有:
,,,
將以上三個等式相加,得.
,,都為正數(shù),
,即,.
.
仔細(xì)閱讀上述材料,解決下面的問題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數(shù)據(jù):如圖,從地面E點(diǎn)測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(diǎn)(與E點(diǎn)在同一個水平線)距停車場頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.
(1)試求該校地下停車場的高度AC;
(2)求CD的高度,一輛高為6米的車能否通過該地下停車場(=1.73,結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A(﹣1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD.
(1)直接寫出點(diǎn)C、D的坐標(biāo);
(2)求△ABD的面積;
(3)點(diǎn)P是拋物線上的一動點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實(shí)數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為18米的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)如果要圍成面積為24m2的花圃,AB的長是多少米?
(3)能圍成面積比24m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段在平面直角坐標(biāo)系中的位置如圖所示,為坐標(biāo)原點(diǎn).若線段上一點(diǎn)的坐標(biāo)為,則直線與線段的交點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數(shù);
(2)求C'B的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,對角線AC與BD相交于點(diǎn)E,AF平分∠BAC,交BD于點(diǎn)F.
(1)求證:EF+AC=AB;
(2)點(diǎn)C1從點(diǎn)C出發(fā),沿著線段CB向點(diǎn)B運(yùn)動(不與點(diǎn)B重合),同時點(diǎn)A1從點(diǎn)A出發(fā),沿著BA的延長線運(yùn)動,點(diǎn)C1與A1的運(yùn)動速度相同,當(dāng)動點(diǎn)C1停止運(yùn)動時,另一動點(diǎn)A1也隨之停止運(yùn)動。如圖2,A1F1平分∠BA1C1,交BD于點(diǎn)F1,過點(diǎn)F1作F1E1⊥A1C1,垂足為E1,請猜想E1F1,A1C1與AB三者之間的數(shù)量關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)A1E1=3,C1E1=2時,求BD的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com