【題目】暑假期間,小明和父母一起開車到距家200千米的景點(diǎn)旅游.出發(fā)前,汽車油箱內(nèi)儲(chǔ)油45升,當(dāng)行駛150千米時(shí),發(fā)現(xiàn)油箱剩余油量為30升.(假設(shè)行駛過程中汽車的耗油量是均勻的.)
(1)寫出用行駛路程x(千米)來表示剩余油量Q(升)的代數(shù)式;
(2)當(dāng)x=300千米時(shí),求剩余油量Q的值;
(3)當(dāng)油箱中剩余油量少于3升時(shí),汽車將自動(dòng)報(bào)警.如果往返途中不加油,他們能否在汽車報(bào)警前回到家?請(qǐng)說明理由.
【答案】(1)Q=45-0.1x;(2)當(dāng)x=300時(shí),Q=15;(3)當(dāng)x=400時(shí),Q=5>3,所以能在汽車報(bào)警前回家。
【解析】
(1)先設(shè)函數(shù)式為:Q=kx+b,然后利用兩對(duì)數(shù)值可求出函數(shù)的解析式;
(2)當(dāng)x=300時(shí),代入上式求出即可;
(3)把x=400代入函數(shù)解析式可得到Q,有Q的值就能確定是否能回到家.
(1)設(shè)Q=kx+b,當(dāng)x=0時(shí),Q=45,當(dāng)x=150時(shí),Q=30,
∴,
解得,
∴Q=x+45(0≤x≤200);
(2)當(dāng)x=300時(shí) Q=15;
(3)當(dāng)x=400時(shí),Q=×400+45=5>3,
∴他們能在汽車報(bào)警前回到家.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明購買了一套安居型商品房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.請(qǐng)根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)用含x、y的代數(shù)式表示地面總面積;
(2)若x=5,y=,鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】清朝數(shù)學(xué)家梅文鼎的著作《方程論》中有這樣一道題:山田三畝,場地六畝,共折實(shí)田四畝七分;又山田五畝,場地三畝,共折實(shí)田五畝五分,問每畝山田折實(shí)田多少,
每畝場地折實(shí)田多少?
譯文為:假如有山田3畝,場地6畝,其產(chǎn)糧相當(dāng)于實(shí)田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當(dāng)于實(shí)田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當(dāng)于實(shí)田多少畝?請(qǐng)你解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90,AC=BC,AD平分∠CAB,DE⊥AB,垂足為E.
(1)求證:CD=BE;
(2)若AB=10,求BD的長度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)圖象與反比例函數(shù)的圖象交于點(diǎn)M、N.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)根據(jù)圖象寫出使的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)粒子在第一象限內(nèi)及x軸,y軸上運(yùn)動(dòng),第1分鐘從原點(diǎn)運(yùn)動(dòng)到,第2分鐘從運(yùn)動(dòng)到,而后它接著按圖中箭頭所示的與x軸y軸平行的方向來回運(yùn)動(dòng),且每分鐘移動(dòng)1個(gè)長度單位.在第2019分鐘時(shí),這個(gè)粒子所在位置的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖①為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.
已知點(diǎn)A的坐標(biāo)為(1,0),
(1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
(2)點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y=2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABC的平分線交AD于點(diǎn)E,過點(diǎn)D作BE的平行線交于BC于F.
(1)求證:△ABE≌△CDF;
(2)若AB=6,BC=8,求DE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com