【題目】(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;
①若∠B=90°則∠F= ;
②若∠B=a,求∠F的度數(shù)(用a表示);
(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.
【答案】(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.
【解析】
(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根據(jù)∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根據(jù)角平分線的定義以及三角形內(nèi)角和定理,即可得到∠H=90°+∠ABG,進(jìn)而得到∠F+∠H=90°+∠CBG=180°.
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案為:45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB與∠GAB的角平分線交于點H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不變,是定值180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識重現(xiàn))我們知道,在axN中,已知底數(shù)a,指數(shù)x,求冪N的運算叫做乘方運算.例如23=8:已知冪N,指數(shù)x,求底數(shù)a的運算叫做開方運算,例如=2.
(學(xué)習(xí)新知)
現(xiàn)定義:如果ax=N(a0且a1),即a的x次方等于N(a0且a1),那么數(shù)x叫做以a為底N的對數(shù)(logarithm),記作x=logaN.其中a叫做對數(shù)的底數(shù),N叫做真數(shù),x叫做以a為底N的對數(shù),例如log28=3,零沒有對數(shù);在實數(shù)范圍內(nèi),負(fù)數(shù)沒有對數(shù).
(應(yīng)用新知)
(1)選擇題:在式子log5125中,真數(shù)是_______.
(2)①計算以下各對數(shù)的值:log39=_______;log327=_______.
②根據(jù)①中計算結(jié)果,請你直接寫出logaM,logaN,loga(MN)之間的關(guān)系,(其中a0且a1,M0,N0).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明設(shè)計用手電來測量某古城墻高度的示意圖,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測得AB=1.2米,BP=1.8米,PD=12米,那么該古城墻的高度是( )
A.6米
B.8米
C.18米
D.24米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB
(1)若∠DAB=72°,∠2= °,∠3= °;
(2)求證:AE∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則S△DAC:S△ABC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
已知,在Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F.
(1)(問題發(fā)現(xiàn))
如圖1,當(dāng)∠EDF繞點D旋轉(zhuǎn)到DE⊥AC于點E時(如圖1),
①證明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(類比探究)
如圖2,當(dāng)∠EDF繞點D旋轉(zhuǎn)到DE與AC不垂直時,且點E在線段AC上,試判斷S△DEF+S△CEF與S△ABC的關(guān)系,并給予證明.
(3)(拓展延伸)
如圖3,當(dāng)點E在線段AC的延長線上時,此時問題(2)中的結(jié)論是否成立?若成立,請給予證明;若不成立,S△DEF,S△CEF,S△ABC又有怎樣的關(guān)系?(寫出你的猜想,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m是整數(shù),關(guān)于x的方程mx2-(m-1)x+1=0有有理根,則方程的根為( )。
A.
B.x=-1
C.
D.有無數(shù)個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標(biāo);
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com