12.已知兩個數(shù)的和為10,設(shè)其中較大的一個數(shù)為x,它們的積為y.
(1)用函數(shù)表達(dá)式表示y與x之間的關(guān)系;
(2)用表格表示:
x        
y        
(3)用圖象表示y與x之間的關(guān)系.

分析 (1)根據(jù)題意表示出較小數(shù),表示出兩數(shù)之積y與x的關(guān)系式即可;
(2)根據(jù)解析式列表即可;
(3)根據(jù)表格數(shù)據(jù),描點連續(xù)畫出圖象.

解答 解:(1)y=x(10-x)=-x2+10x=-(x-5)2+25;

(2)用表格表示:(2)用表格表示:

x34567
Y2124252421
(3)用圖象表示,如圖所示:

點評 此題考查了二次函數(shù)的應(yīng)用,以及二次函數(shù)的圖象,弄清題意是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.不改變分式的值.使分式的分子與分母都不含負(fù)號:
-$\frac{5n}{-m}$=$\frac{5n}{m}$
$\frac{-(a+b)}{2a-b}$=$\frac{a+b}{b-2a}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知線段AB為⊙O的直徑,線段AC為⊙O的弦,∠CAB的角平分線交⊙O于點D,過D作DE⊥AC,交AC的延長線于E.
(1)求證:DE為⊙O的切線.
(2)連接OE交AD于F,若AE=8,$\frac{AF}{AD}$=$\frac{8}{13}$,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.已知:如圖,在Rt△ABC中,∠ACB=Rt∠,CD⊥AB于點D.
(1)求證:BC是△ADC的外接圓的切線.
(2)在△ABC中,哪條邊所在的直線是△BDC的外接圓的切線?為什么?
(3)若AC=5cm,BC=12cm,以C為圓心,2.4cm為半徑作⊙C,判斷⊙C與直線AB的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.某車間有20名工人,已知每人每天可加工甲種零件5個或乙種零件4個,現(xiàn)派x人加工甲零件,其余的工人加工乙零件.根據(jù)市場行情得知每加工一個甲零件獲利24元,每加工一個乙零件可獲得利潤16元,用含x的代數(shù)式來表示該車間一天所獲得的利潤為(1280+56x)元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知x=2002,y=-1,n為自然數(shù),求代數(shù)式(x2n+y2n+xnyn)(xn-yn)-(x2n-xnyn)+y2n(xn+yn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.若二次函數(shù)y=ax2+bx+c的圖象最高點為(1,3)經(jīng)過(-1,0)兩點,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.在Rt△ABC中,已知cosB=$\frac{7}{25}$,則tanB的值為$\frac{24}{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.已知:$\frac{1}{a}+\frac{1}=3$,則$\frac{ab}{3a-ab+3b}$=$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊答案