【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

【答案】D
【解析】解:A、不是軸對稱圖形,是中心對稱圖形.故錯誤;

B、不是軸對稱圖形,是中心對稱圖形.故錯誤;

C、是軸對稱圖形,不是中心對稱圖形.故錯誤;

D、是軸對稱圖形,是中心對稱圖形.故正確.

所以答案是:D.

【考點精析】根據(jù)題目的已知條件,利用軸對稱圖形和中心對稱及中心對稱圖形的相關(guān)知識可以得到問題的答案,需要掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.

(1)求證:CD是⊙O的切線.
(2)若 ,求∠E的度數(shù).
(3)連接AD,在(2)的條件下,若CD= ,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,E是邊DC上一點,連接AEBC的延長線于點H,點F是邊AB上一點,使得,作的角平分線BH于點G,若,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中(AB>BC),AC=2BC,BC邊上的中線AD把ABC的周長分成60和40兩部分,求AC和AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在平面直角坐標(biāo)系中,O為原點,點Ax軸上,點Cy軸上,OA=10,OC=8,如圖在OC邊上取一點D,將△BCD沿BD折疊,使點C恰好落在OA邊上,記作E點;

1)求點E的坐標(biāo)及折痕DB的長;

2)在x軸上取兩點M、N(點M在點N的左側(cè)),且MN=4.5,求使四邊形BDMN的周長最短的點M、點N的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求進行計算:
(1)計算:(﹣1)5+15×3﹣2 ;
(2)求不等式組: 的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面夾角是45°時,教學(xué)樓頂部A在地面上的影子F與墻角C的距離為18m(B、F、C在同一直線上).求教學(xué)樓AB的高;(結(jié)果保留整數(shù))(參考數(shù)據(jù):sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

同步練習(xí)冊答案