【題目】方成同學(xué)看到一則材料:甲開(kāi)汽車(chē),乙騎自行車(chē)從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時(shí)間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示.
方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時(shí)與乙相遇.
請(qǐng)你幫助方成同學(xué)解決以下問(wèn)題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達(dá)式;
(2)當(dāng)20<y<30時(shí),求t的取值范圍;
(3)分別求出甲,乙行駛的路程S甲,S乙與時(shí)間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫(huà)出它們的圖象;
(4)丙騎摩托車(chē)與乙同時(shí)出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過(guò)h與乙相遇,問(wèn)丙出發(fā)后多少時(shí)間與甲相遇?
【答案】(1)直線BC的解析式為:y=40t﹣60,直線CD的函數(shù)解析式為:y=﹣20t+80;
(2)OA的函數(shù)解析式為:y=20t(0≤t≤1),或;
(3)所畫(huà)圖象見(jiàn)解析;
(4)丙出發(fā)與甲相遇.
【解析】試題分析:(1)利用待定系數(shù)法求函數(shù)解析式,即可解答;
(2)先求出甲、乙的速度、所以OA的函數(shù)解析式為:y=20t(0≤t≤1),所以點(diǎn)A的縱坐標(biāo)為20,根據(jù)當(dāng)20<y<30時(shí),得到20<40t﹣60<30,或20<﹣20t+80<30,解不等式組即可;
(3)得到S甲=60t﹣60(),S乙=20t(0≤t≤4),畫(huà)出函數(shù)圖象即可;
(4)確定丙距M地的路程S丙與時(shí)間t的函數(shù)表達(dá)式為:S丙=﹣40t+80(0≤t≤2),根據(jù)S丙=﹣40t+80與S甲=60t﹣60的圖象交點(diǎn)的橫坐標(biāo)為,所以丙出發(fā)h與甲相遇.
解:(1)直線BC的函數(shù)解析式為y=kt+b,
把(1.5,0),()代入得:
解得:,
∴直線BC的解析式為:y=40t﹣60;
設(shè)直線CD的函數(shù)解析式為y1=k1t+b1,
把(),(4,0)代入得:,
解得:,
∴直線CD的函數(shù)解析式為:y=﹣20t+80.
(2)設(shè)甲的速度為akm/h,乙的速度為bkm/h,根據(jù)題意得;
,
解得:,
∴甲的速度為60km/h,乙的速度為20km/h,
∴OA的函數(shù)解析式為:y=20t(0≤t≤1),所以點(diǎn)A的縱坐標(biāo)為20,
當(dāng)20<y<30時(shí),
即20<40t﹣60<30,或20<﹣20t+80<30,
解得:或.
(3)根據(jù)題意得:S甲=60t﹣60()
S乙=20t(0≤t≤4),
所畫(huà)圖象如圖2所示:
(4)當(dāng)t=時(shí),,丙距M地的路程S丙與時(shí)間t的函數(shù)表達(dá)式為:
S丙=﹣40t+80(0≤t≤2),
如圖3,
S丙=﹣40t+80與S甲=60t﹣60的圖象交點(diǎn)的橫坐標(biāo)為,
所以丙出發(fā)h與甲相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(3,﹣6)是二次函數(shù)y=ax2上的一點(diǎn),則這二次函數(shù)的解析式是 .
【答案】y=﹣x2
【解析】
試題分析:將點(diǎn)A(3,﹣6)代入y=ax2,利用待定系數(shù)法法求該二次函數(shù)的解析式即可得﹣6=9a,
解得a=﹣;因此該二次函數(shù)的解析式為:y=﹣x2.
考點(diǎn):待定系數(shù)法求二次函數(shù)解析式
【題型】填空題
【結(jié)束】
15
【題目】在一個(gè)不透明的口袋中裝有8個(gè)紅球和若干個(gè)白球,它們除顏色外其它完全相同,通過(guò)多次摸球試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在40%附近,則口袋中白球可能有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,已知三角形ABC,按要求畫(huà)圖:
(1)把三角形ABC向下平移4個(gè)小格,得到三角形A1B1C1,畫(huà)出三角形A1B1C1.
(2)把三角形A1B1C1向右平移3個(gè)小格,得到三角形A2B2C2,畫(huà)出三角形A2B2C2.
(3)經(jīng)過(guò)2次平移,點(diǎn)P(x,y)的對(duì)應(yīng)點(diǎn)P2的坐標(biāo)是___________.
(4)三角形ABC的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán),被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(14分)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱(chēng)軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為 ;拋物線的解析式為 .
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱(chēng)軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,P是CD邊上一點(diǎn),且AP、BP分別平分∠DAB、∠CBA,若AD=5,AP=6,則△APB的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫(huà)面的“視線角” 約為,而當(dāng)手指接觸鍵盤(pán)時(shí),肘部形成的“手肘角”約為.圖是其側(cè)面簡(jiǎn)化示意圖,其中視線水平,且與屏幕垂直.
()若屏幕上下寬,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離的長(zhǎng).
()若肩膀到水平地面的距離,上臂,下臂水平放置在鍵盤(pán)上,其到地面的距離,請(qǐng)判斷此時(shí)是否符合科學(xué)要求的?
(參考數(shù)據(jù): , , , ,所有結(jié)果精確到個(gè)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為研究學(xué)生的課余活動(dòng)情況,采取抽樣的方法,從閱讀、運(yùn)動(dòng)、娛樂(lè)、其它等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛(ài)好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計(jì)圖(如圖),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
①這次調(diào)研,一共調(diào)查了 人.
②有閱讀興趣的學(xué)生占被調(diào)查學(xué)生總數(shù)的 %.
③有“其它”愛(ài)好的學(xué)生共多少人?
④補(bǔ)全折線統(tǒng)計(jì)圖.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com