某蘋果手機(jī)專賣店銷售iPhone4手機(jī),進(jìn)價(jià)每臺(tái)3000元,一月份以每臺(tái)4000元的價(jià)格售出了100臺(tái),為了擴(kuò)大銷售,決定降價(jià)出售,但不能低于進(jìn)價(jià).經(jīng)市場(chǎng)調(diào)查.每臺(tái)手機(jī)每下降100元,月銷售量將上升10臺(tái),經(jīng)調(diào)整價(jià)格后,3月份的月銷售額達(dá)到576000元.
(1)求一月份到三月份的月平均增長(zhǎng)率;
(2)求三月份手機(jī)的價(jià)格.
考點(diǎn):一元二次方程的應(yīng)用
專題:銷售問題
分析:(1)由題意可得,1月份的銷售額為:40000元;設(shè)1月份到3月份銷售額的月平均增長(zhǎng)率x,則二月份的銷售額為:40000(1+x);三月份的銷售額為:40000(1+x)(1+x),又知三月份的銷售額為:576000元,由此等量關(guān)系列出方程求出x的值,即求出了平均增長(zhǎng)率;
(2)已知手表價(jià)格每只下降100元,月銷售量將上升10臺(tái),所以設(shè)3月份手機(jī)的銷售價(jià)格在每臺(tái)4000元的基礎(chǔ)上下降y元,那么三月份銷售量為:(100+2y)臺(tái).即:此時(shí),三月份的銷售額為:(4000-y)(100+2y),又知三月份的銷售額為:576000元,由此等量關(guān)系列出方程求出y的值,所以三月份的銷售價(jià)格為:(4000-y)元.
解答:解:(1)設(shè)1月份到3月份銷售額的月平均增長(zhǎng)率為x,
由題意得:4000(1+x)2=576000,
1+x=±1.2,
x1=0.2,x2=-2.2(舍去)
答:1月份到3月份銷售額的月平均增長(zhǎng)率為20%;

(2)設(shè)3月份手表的銷售價(jià)格在每臺(tái)4000元的基礎(chǔ)上下降y元,
由題意得:(4000-y)(100+0.1y)=576000,
∴y=800或y=2200,
當(dāng)y=2200時(shí),3月份該手機(jī)的銷售價(jià)格為4000-2200=1800<3000不合題意舍去.
∴y=800,3月份該手機(jī)的銷售價(jià)格為4000-800=3200元.
∴3月份時(shí)該手機(jī)的銷售價(jià)格為3200元.
答:3月份時(shí)該手機(jī)的銷售價(jià)格為3200元.
點(diǎn)評(píng):本題的關(guān)鍵在于理解題意,找出等量關(guān)系,列出方程;判斷所求的解是否符合題意,舍去不合題意的解.找到關(guān)鍵描述語(yǔ),找到等量關(guān)系準(zhǔn)確的列出方程是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知三條拋物線C1:y=ax2+bx+c;C2:y=bx2+cx+a;C3:y=cx2+ax+b,(a,b,c互不相等)
(1)若a=1,b=2,c=-3,且拋物線C1和C2相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(i)求A、B兩點(diǎn)的距離;
(ii)若點(diǎn)P在拋物線C1上,點(diǎn)Q在拋物線C2上,且均位于點(diǎn)A和點(diǎn)B之間,求當(dāng)PQ∥y軸時(shí),PQ長(zhǎng)度的最大值.
(2)若這三條拋物線在x軸上恰好有一個(gè)公共交點(diǎn),求
a2
bc
+
b2
ca
+
c2
ab
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形ABCD是平行四邊形,且AB=BE,CD=DF.
(1)如圖,若點(diǎn)E、F分別在CB、AD的延長(zhǎng)線上,求證:四邊形AECF是平行四邊形;
(2)若點(diǎn)E、F分別在DA、BC的延長(zhǎng)線上,(1)問中的結(jié)論還成立嗎?不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡(jiǎn),再求值:(
x2-1
x2-2x+1
+
1-x
x+1
)÷
x
x-1
,并從-1≤x≤3中選一個(gè)合適的整數(shù)x代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:(
3
-3)0-
9
-(-1)2013-|-2|+(-
1
3
-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:(x+1)(x+2)(x+3)(x+4)=120.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

x
2
=
y
3
=
z
4
,則
2x+3y+z
x
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知2×53x+2-3×53x+1=175,則x的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,DO⊥AB于點(diǎn)O,CD是⊙O的切線,切點(diǎn)為C,連接AC,交OD于點(diǎn)E.
(1)求證:∠DCE=∠DEC;
(2)若AB=17,AC=15,求CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案