【題目】如圖,中,,,在軸的正半軸,,分別與雙曲線,相交于點(diǎn)和點(diǎn),且,若,則點(diǎn)的橫坐標(biāo)為( )
A.B.C.D.
【答案】D
【解析】
由OA的長(zhǎng)度以及點(diǎn)D在雙曲線相的圖象上,即可得出點(diǎn)D的坐標(biāo),根據(jù)CD∥OA以及BC:CO=1:2,即可得出點(diǎn)B的坐標(biāo),由點(diǎn)O、B的坐標(biāo)即可求出直線OB的解析式,再聯(lián)立直線OB以及雙曲線的解析式成方程組,解方程組即可求出點(diǎn)E的橫坐標(biāo).
解:∵OA=6,點(diǎn)D在雙曲線的圖象上,
∴D(6,)
∵CD∥OA,BC:CO=1:2,
∴BD:BA=1:3,
∴AD∶AB=2∶3
∴AB=
∴B(6,),
∵O(0,0)、B(6,)
∴直線OB的解析式為x.
聯(lián)立直線OB與雙曲線曲線的解析式成方程組,
得:,解得:x=
∵點(diǎn)E在第一象限,
∴x=.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,直徑AD交BC于點(diǎn)E,延長(zhǎng)AD至點(diǎn)F,使DF=2OD,連接FC并延長(zhǎng)交過(guò)點(diǎn)A的切線于點(diǎn)G,且滿(mǎn)足AG∥BC,連接OC,若cos∠BAC=,BC=8.
(1)求證:CF是⊙O的切線;
(2)求⊙O的半徑OC;
(3)如圖2,⊙O的弦AH經(jīng)過(guò)半徑OC的中點(diǎn)F,連結(jié)BH交弦CD于點(diǎn)M,連結(jié)FM,試求出FM的長(zhǎng)和△AOF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形的邊在軸上,點(diǎn)的坐標(biāo)為,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),點(diǎn)在軸上,當(dāng)最短時(shí),點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)摩天輪,它共有8個(gè)座艙,依次標(biāo)為1~8號(hào),摩天輪中心O的離地高度為50米,摩天輪中心到各座艙中心均相距25米,在運(yùn)行過(guò)程中,當(dāng)1號(hào)艙比3號(hào)艙高5米時(shí),1號(hào)艙的離地高度為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉,進(jìn)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為100元/m2.
(1)請(qǐng)直接寫(xiě)出當(dāng)0≤x≤300和x>300時(shí),y與x的函數(shù)關(guān)系式;
(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,如果甲種花卉的種植面積不少于200m2,且不超過(guò)乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?
(3)在(2)的條件下,若種植總費(fèi)用不小于123000元,求出甲種花卉種植面積的范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),是以點(diǎn)為圓心,為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連接,則線段的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m<0.
(1)求點(diǎn)E、F的坐標(biāo)(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖2,設(shè)拋物線y=a(x﹣m+6)2+h經(jīng)過(guò)A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM=90°,求a、h、m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作AC的垂線交AC的延長(zhǎng)線于點(diǎn)E,連接BC交AD于點(diǎn)F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),點(diǎn)為拋物線的頂點(diǎn),拋物線的對(duì)稱(chēng)軸與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)作勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為,過(guò)點(diǎn)作,交于點(diǎn),以為正方形的一邊,向上作正方形,邊交于點(diǎn),延長(zhǎng)交于點(diǎn).
①當(dāng)為何值時(shí),點(diǎn)落在拋物線上;
②在點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得四邊形為平行四邊形?若存在,求出此時(shí)刻的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com