【題目】如圖,△ABC中,AC=BC,∠C=90°,點(diǎn)D是AB的中點(diǎn).
(1)如圖1,若點(diǎn)E、F分別是AC、BC上的點(diǎn),且AE=CF,請(qǐng)判別△DEF的形狀,并說(shuō)明理由;
(2)若點(diǎn)E、F分別是CA、BC延長(zhǎng)線上的點(diǎn),且AE=CF,則(1)中的結(jié)論是否仍然成立?請(qǐng)
說(shuō)明理由.
【答案】(1)△DEF是等腰直角三角形. (2)仍然成立.
【解析】試題分析:
(1)連接CD,如圖1,結(jié)合已知條件易證△AED≌△CFD,由此即可證得DE=DF,∠EDF=90°,從而可得△DEF是等腰直角三角形;
(2)先根據(jù)題意畫(huà)出符合要求的圖形,如圖2,連接CD,結(jié)合已知條件易證△AED≌△CFD,由此即可證得;DE=DF,∠EDF=90°,從而可得此時(shí)△DEF仍然是等腰直角三角形.
試題解析:
(1)△DEF是等腰直角三角形,理由如下:
如圖1,連接CD,
∵AC=BC,∠ACB=90°,點(diǎn)D是BC邊的中點(diǎn),
∴CD⊥BC,∠A=∠DCF=45°,CD=BC=AD,
又∵AE=CF,
∴△AED≌△CFD,
∴DE=DF,∠ADE=∠CDF,
又∵CD⊥BC,
∴∠CFD+∠CDE=∠ADE+∠CDE=∠CDA=90°,即∠EDF=90°,
∴△DEF是等腰直角三角形;
(2)如圖2,(1)中結(jié)論仍然成立,理由如下:
連接CD,∵AC=BC,∠ACB=90°,點(diǎn)D是BC邊的中點(diǎn),
∴CD⊥BC,∠A=∠DCB=45°,CD=BC=AD,
∴∠EAD=180°+45°=135°,∠ACD=180°-45°=135°,
又∵AE=CF,
∴△AED≌△CFD,
∴DE=DF,∠ADE=∠CDF,
又∵CD⊥BC,
∴∠ADE+∠ADF=∠CDF+∠ADF=∠CDA=90°,即∠EDF=90°,
∴△DEF是等腰直角三角形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,直線MN分別與x軸、y軸交于點(diǎn)M(6,0),N(0, ),等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸正半軸上,點(diǎn)A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個(gè)單位長(zhǎng)度的速度平移,邊AB,AC分別與線段MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為t(s).
(1)等邊△ABC的邊長(zhǎng)為_______;
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)t=_______時(shí),MN垂直平分AB;
(3)若在△ABC開(kāi)始平移的同時(shí).點(diǎn)P從△ABC的頂點(diǎn)B出發(fā).以每秒2個(gè)單位長(zhǎng)度的速度沿折線BA—AC運(yùn)動(dòng).當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí)即停止運(yùn)動(dòng).△ABC也隨之停止平移.
①當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),若△PEF與△MNO相似.求t的值;
②當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí),設(shè),求S與t的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將三角形各頂點(diǎn)的縱坐標(biāo)都減去1,橫坐標(biāo)保持不變,所得圖形與原圖形相比是( )
A.向下平移了1個(gè)單位B.向上平移了1個(gè)單位
C.向左平移了1個(gè)單位D.向右平移了1個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程mx-3x+m-4=0(m為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè),是方程的兩個(gè)實(shí)數(shù)根,且+=6.請(qǐng)求出方程的這兩個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的中線,若△ABD與△ACD的周長(zhǎng)分別是14和12.△ABC的周長(zhǎng)是20,則AD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, ⊙O 的半徑是2,直線l與⊙O 相交于A、B 兩點(diǎn),M、N 是⊙O 上的兩個(gè)動(dòng)點(diǎn),且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB 面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 是⊙O 的直徑,點(diǎn)C 是⊙O 上一點(diǎn),AD 與過(guò)點(diǎn)C的切線垂直,垂足為 D,直線 DC 與AB 的延長(zhǎng)線相交于點(diǎn)P,弦CE 平分∠ACB,交AB 于點(diǎn)F,連接BE.
求證:(1)AC 平分∠DAB;
(2)△PCF 是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題為假命題的是( 。
A.垂線段最短
B.兩條直線相交,若鄰補(bǔ)角相等,則這兩條直線互相垂直
C.相等的角是對(duì)頂角
D.經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com