【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個(gè)交點(diǎn)坐標(biāo)為(1,2),另一個(gè)交點(diǎn)是該二次函數(shù)圖像的頂點(diǎn)
(1)求k,a,c的值;
(2)過(guò)點(diǎn)A(0,m)(0<m<4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.
【答案】(1)k=-2,a=-2,c=4;(2), W取得最小值7.
【解析】
(1)把(1,2)分別代入y=kx+4和y=ax2+c,得k+4=-2和a+c=2,然后求出二次函數(shù)圖像的頂點(diǎn)坐標(biāo)為(0,4),可得c=4,然后計(jì)算得到a的值;
(2)由A(0,m)(0<m<4)可得OA=m,令y=-2x2+4=m,求出B,C坐標(biāo),進(jìn)而表示出BC長(zhǎng)度,將OA,BC代入W=OA2+BC2中得到W關(guān)于m的函數(shù)解析式,求出最小值即可.
解:(1)由題意得,k+4=-2,解得k=-2,
∴一次函數(shù)解析式為:y=-2x+4
又二次函數(shù)頂點(diǎn)橫坐標(biāo)為0,
∴頂點(diǎn)坐標(biāo)為(0,4)
∴c=4
把(1,2)帶入二次函數(shù)表達(dá)式得a+c=2,解得a=-2
(2)由(1)得二次函數(shù)解析式為y=-2x2+4,令y=m,得2x2+m-4=0
∴,設(shè)B,C兩點(diǎn)的坐標(biāo)分別為(x1,m)(x2,m),則,
∴W=OA2+BC2=
∴當(dāng)m=1時(shí),W取得最小值7
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=9,AD=6,點(diǎn)O為對(duì)角線AC的中點(diǎn),點(diǎn)E在DC的延長(zhǎng)線上且CE=1.5,連接OE,過(guò)點(diǎn)O作OF⊥OE交CB延長(zhǎng)線于點(diǎn)F,連接FE并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)G,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形ABCD中,∠B=60°,動(dòng)點(diǎn)P以每秒1個(gè)單位的速度自點(diǎn)A出發(fā)沿線段AB運(yùn)動(dòng)到點(diǎn)B,同時(shí)動(dòng)點(diǎn)Q以每秒2個(gè)單位的速度自點(diǎn)B出發(fā)沿折線B﹣C﹣D運(yùn)動(dòng)到點(diǎn)D.圖2是點(diǎn)P、Q運(yùn)動(dòng)時(shí),△BPQ的面積S隨時(shí)間t變化關(guān)系圖象,則a的值是( )
A.2B.2.5C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)P在x軸上運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥x軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;
(3)是否存在點(diǎn)P,使得以點(diǎn)C、O、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:由兩條與x軸有著相同的交點(diǎn),并且開口方向相同的拋物線所圍成的封閉曲線稱為“月牙線”.如圖,拋物線C1與拋物線C2組成一個(gè)開口向上的“月牙線”,拋物線C1與拋物線C2與x軸有相同的交點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)),與y軸的交點(diǎn)分別為A,B且點(diǎn)A的坐標(biāo)為(0,﹣3),拋物線C2的解析式為y=mx2+4mx﹣12m,(m>0).
(1)請(qǐng)你根據(jù)“月牙線”的定義,設(shè)計(jì)一個(gè)開口向下.“月牙線”,直接寫出兩條拋物線的解析式;
(2)求M,N兩點(diǎn)的坐標(biāo);
(3)在第三象限內(nèi)的拋物線C1上是否存在一點(diǎn)P,使得△PAM的面積最大?若存在,求出△PAM的面積的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,,AC、BD交于點(diǎn)O,點(diǎn)P、Q分別是AB、BD上的動(dòng)點(diǎn),點(diǎn)P的運(yùn)動(dòng)路徑是,點(diǎn)Q的運(yùn)動(dòng)路徑是BD,兩點(diǎn)的運(yùn)動(dòng)速度相同并且同時(shí)結(jié)束.若點(diǎn)P的行程為x,的面積為y,則y關(guān)于x的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2018鄭州模擬)冬季即將來(lái)臨,某電器超市銷售每臺(tái)進(jìn)價(jià)分別為300元、255元的A,B兩種型號(hào)的電熱扇,下表是近兩周的銷售情況:
銷售時(shí)段 | |||
銷售數(shù)量 | |||
A種型號(hào) | B種型號(hào) | 銷售收入 | |
第一周 | 2臺(tái) | 3臺(tái) | 1695元 |
第二周 | 5臺(tái) | 6臺(tái) | 3765元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)銷售收入進(jìn)貨成本)
(1)分別求出A,B兩種型號(hào)電熱扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不超過(guò)8100元的金額再采購(gòu)這兩種型號(hào)的電熱扇共30臺(tái),求A種型號(hào)的電熱扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電熱扇能否實(shí)現(xiàn)利潤(rùn)為2100元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】復(fù)課返校后,為了讓同學(xué)們進(jìn)一步了解“新型冠狀病毒”的防控知識(shí),某學(xué)校組織了一次關(guān)于“新型冠狀病毒”的防控知識(shí)比賽,從問(wèn)卷中隨機(jī)抽查了一部分,對(duì)調(diào)查結(jié)果進(jìn)行了分組統(tǒng)計(jì),并制作了表格與條形統(tǒng)計(jì)圖(如圖):
分組結(jié)果 | 頻數(shù) | 頻率 |
.完全掌握 | 30 | 0.3 |
.比較清楚 | 50 | |
.不怎么清楚 | 0.15 | |
.不清楚 | 5 |
請(qǐng)根據(jù)上圖完成下面題目:
(1)總?cè)藬?shù)為 人, , .
(2)請(qǐng)求出n的值并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若全校有2700人,請(qǐng)你估算一下全校對(duì)“新型冠狀病毒”的防控知識(shí)“完全掌握”的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若方程的根為有理數(shù),求正整數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com