我們來探究“雪花曲線”的有關(guān)問題:圖A是邊長為1的正三角形,將此正三角形的每一邊三等分,而以其居中的那一條線段為底邊再作正三角形,然后以其兩腰代替底邊,得到的第二個圖形如圖B.再將圖B的每邊三等分,重復(fù)上述的作法;得到的第三個圖形如圖C.如此繼續(xù)下去,得到的第五個圖形的周長應(yīng)等于

[  ]

A.3
B.
C.
D.
答案:B
解析:

第一個圖形的邊數(shù)為3,第二個圖形的邊數(shù)為12,第三個圖形的邊數(shù)為48;

∴邊數(shù)的規(guī)律是3×

第一個圖形的邊長為1,第二個圖形的邊長為,第三個圖形的邊長為;

∴邊長的規(guī)律是

∴其周長為3××

∴第五個圖形的周長為3××

∴選B


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們來探究“雪花曲線”的有關(guān)問題:下圖(1)是邊長為1的正三角形,將此正三角形的每條邊三等分,而以居中的那一條線段為底邊再作正三角形,然后以其兩腰代替底邊,得到第二個圖形如下圖(2).再將下圖(2)的每條邊三等分,并重復(fù)上述的作法,得到第三個圖形如下圖(3),如此繼續(xù)下去,得到的第五個圖形的周精英家教網(wǎng)長應(yīng)等于( 。
A、3
B、
256
27
C、
243
16
D、
1024
81

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)我們來探究“雪花曲線”的有關(guān)問題:如圖(1)是邊長為1的正三角形,將此三正角形的每條邊三等分,而以居中的那一條線段為底邊再作正三角形;然后以其兩腰代替底邊,得到第二個圖形如圖(2);再將圖(2)的每條邊三等分,并重復(fù)上述的作法,得到第三個圖形如圖(3),如此繼續(xù)下去,得到的第五個圖形的周長應(yīng)等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們來探究“雪花曲線”的有關(guān)問題:下圖是邊長為1的正三角形,將此正三角形的每條邊三等分,而以居中的那一條線段為底邊再作正三角形,然后以其兩腰代替底邊,得到第二個圖形如下圖;再將下圖的每條邊三等分,并重復(fù)上述的作法,得到第三個圖形如下圖.
(1)求第5個圖形周長.
(2)求第n個圖形與周長C的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們來探究“雪花曲線”的有關(guān)問題:如圖(1)是邊長為1的正三角形,將此三正角形的每條邊三等分,而以居中的那一條線段為底邊再作正三角形;然后以其兩腰代替底邊,得到第二個圖形如圖(2);再將圖(2)的每條邊三等分,并重復(fù)上述的作法,得到第三個圖形如圖(3),如此繼續(xù)下去,得到的第五個圖形的周長應(yīng)等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•泉州)我們來探究“雪花曲線”的有關(guān)問題:下圖(1)是邊長為1的正三角形,將此正三角形的每條邊三等分,而以居中的那一條線段為底邊再作正三角形,然后以其兩腰代替底邊,得到第二個圖形如下圖(2).再將下圖(2)的每條邊三等分,并重復(fù)上述的作法,得到第三個圖形如下圖(3),如此繼續(xù)下去,得到的第五個圖形的周長應(yīng)等于( )

A.3
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案