分析 先根據(jù)三角形的內(nèi)角和定理求出∠CEF+∠CFE=∠A+∠B,再根據(jù)折疊變換的性質(zhì),即可求出∠CEC′+∠CEC′的度數(shù),然后利用兩個平角的度數(shù)求解即可.
解答 解:如圖,∵∠CEF+∠CFE+∠C=∠A+∠B+∠C,
∴∠CEF+∠CFE=∠A+∠B=75°+65°=140°,
又∵將紙片的一角折疊,使點C落在△ABC內(nèi),
∴∠C′EF+∠C′F=∠CEF+∠CFE=140°,
∴∠CEC′+∠CEC′=140°+140°=280°,
∵∠1=30°,
∴∠2=180°×2-∠CEC′+∠CEC′-∠1=360°-280°-30°=50°.
故∠2的度數(shù)為50°.
點評 本題考查了翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟練掌握翻折變換的性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com