【題目】如圖①,E在AB上,、都為等腰直角三角形,,連接DB,以DE、DB為邊作平行四邊形DBFE,連接FC、DC.
(1)求證:;;
(2)將圖①中繞A點(diǎn)順時(shí)針旋轉(zhuǎn),其它條件不變,如圖②,(1)中的結(jié)論是否成立?說明理由.
(3)將圖①中的繞A點(diǎn)順時(shí)針旋轉(zhuǎn),,其它條件不變,當(dāng)四邊形DBFE為矩形時(shí),直接寫出的值.
【答案】(1)見解析;(2)結(jié)論成立,見解析;(3)或
【解析】
(1)先由△ACB、△ADE都為等腰直角三角形得出AD=DE,AC=BC,再由四邊形DBFE是平行四邊形得DE=BF,再證明∠CAD=∠CBF,即可證明△CAD≌△CBF,進(jìn)而解決問題;
(2)延長DE交BC于M,只要證明△CAD≌△CBF即可解決問題;
(3)分兩種情形畫出圖形即可解決問題.
(1)證明:如圖①中,
∵△ACB、△ADE都為等腰直角三角形,∠ADE=∠ACB=90°,
∴AD=DE,AC=BC,
∴∠AED=∠DAE=∠ABC=45°,
∵四邊形DBFE是平行四邊形,
∴DE=BF,DE∥BF,
∴AD=BF,∠FBE=∠DEB=180°-45°=135°,
∴∠FBC=135°-45°=90°,
∵∠CAD=∠CAB+∠DAE=45°+45°=90°,
∴∠CAD=∠CBF,
∴△CAD≌△CBF,
∴CD=CF,∠ACD=∠BCF,
∵∠ACD+∠BCD=90°
∴∠FCB+∠BCD=90°
∴∠DCF=∠ACB=90°,
∴CD⊥CF,CD=CF.
(2)結(jié)論成立.
理由:如圖②中,延長DE交BC于M.
∵△ACB、△ADE都為等腰直角三角形,∠ADE=∠ACB=90°,
∴AD=DE,AC=BC,
∴∠AED=∠DAE=∠ABC=45°,
∵四邊形DBFE是平行四邊形,
∴DE=BF,DE∥BF,
∴∠FBC=∠DMB,
∵∠DAC+∠CMD=360°-90°-90°=180°,∠DMB+∠CMD=180°,
∴∠DAC=∠DMB,
∴∠FBC=∠CAD,
∴△CAD≌△CBF,
∴CD=CF,∠ACD=∠BCF,
∴∠DCF=∠ACB=90°,
∴CD⊥CF,CD=CF.
(3)如圖③中,當(dāng)旋轉(zhuǎn)角α=45°時(shí),四邊形BDEF是矩形;
如圖④中,當(dāng)旋轉(zhuǎn)角α=225°時(shí),四邊形BDEF是矩形;
綜上所述,α為45°或225°時(shí),四邊形EFBD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),下列結(jié)論中不正確的是( )
A.圖象必經(jīng)過點(diǎn) B.隨 的增大而增大
C.圖象在第二,四象限內(nèi)D.若,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在反比例函數(shù)的圖象上,,軸于點(diǎn)C.
求反比例函數(shù)的表達(dá)式;
求的面積;
若將繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)得到點(diǎn)O、A的對(duì)應(yīng)點(diǎn)分別為、,點(diǎn)是否在反比例函數(shù)的圖象上?若在請(qǐng)直接寫出該點(diǎn)坐標(biāo),若不在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在⊙O中,AB是直徑,AC是弦,OE⊥AC于點(diǎn)E,過點(diǎn)C作直線FC,使∠FCA=∠AOE,交AB的延長線于點(diǎn)D.
(1)求證:FD是⊙O的切線;
(2)設(shè)OC與BE相交于點(diǎn)G,若OG=2,求⊙O半徑的長;
(3)在(2)的條件下,當(dāng)OE=3時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,奧運(yùn)圣火抵達(dá)某市奧林匹克廣場后,沿圖中直角坐標(biāo)系中的一段反比例函數(shù)圖象傳遞.動(dòng)點(diǎn)表示火炬位置,火炬從離北京路10米處的M點(diǎn)開始傳道,到離北京路1000米的N點(diǎn)時(shí)傳遞活動(dòng)結(jié)束.迎圣火臨時(shí)指揮部設(shè)在坐標(biāo)原點(diǎn)O(北京路與奧運(yùn)路的十字路口),OATB為少先隊(duì)員鮮花方陣,方陣始終保持矩形形狀且面積恒為10000(路線寬度均不計(jì)).
(1)求圖中反比例函數(shù)的關(guān)系式(不需寫出自變量的取值范圍);
(2)當(dāng)鮮花方陣的周長為500米時(shí),確定此時(shí)火炬的位置(用坐標(biāo)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(-3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點(diǎn).
(1)求b的值;
(2)判斷關(guān)于x的一元二次方程2x2+bx+1=0是否有實(shí)數(shù)根,若有,求出它的實(shí)數(shù)根;若沒有,請(qǐng)說明理由;
(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個(gè)單位,使平移后的圖象與x軸無交點(diǎn),求k的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=4,BC=,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(-2,0),等邊三角形AOC經(jīng)過平移或軸對(duì)稱或旋轉(zhuǎn)對(duì)稱都可以得到△OBD。
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是 個(gè)單位長度;△AOC與△OBD關(guān)于直線對(duì)稱,則對(duì)稱軸是 ;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是 度;
(2)連接AD,交OC于點(diǎn)E,求∠AEO的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2 +bx+ 4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),與y軸交于點(diǎn)C,頂點(diǎn)為D.E(1,2)為線段BC的中點(diǎn),BC的垂直平分線與x軸、y軸分別交于F、G.
(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)在直線EF上求一點(diǎn)H,使△CDH的周長最小,并求出最小周長;
(3)若點(diǎn)K在x軸上方的拋物線上運(yùn)動(dòng),當(dāng)K運(yùn)動(dòng)到什么位置時(shí),
△EFK的面積最大?并求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com