【題目】如圖,等邊△ABC的邊長為2,點D是射線BC上的一個動點,以AD為邊向右作等邊△ADE,連結(jié)CE

1)求證:△ABD≌△ACE;

2)若CE,求△ACD的面積;

3)若△ACE是直角三角形,則BD的長是   (直接寫出答案).

【答案】1)見解析;(2SACD;(314

【解析】

1)構(gòu)建兩邊及其夾角對應相等的兩個三角形全等即可證明.
2)如圖2中,作AMBCM.由(1)可知BD=CE=,求出CD、AM即可解決問題.
3)分兩種情形①如圖3中,當∠AEC=90°時,②如圖4中,當∠CAE=90°時,分別求解即可.

1)證明:如圖1中,

∵△ABC,△ADE是等邊三角形,

ABACADAE,∠BAC=∠DAE60°,

∴∠BAD=∠CAE

在△BAD和△CAE中,

,

∴△BAD≌△CAE

2)解:如圖2中,作AMBCM

∵△ABD≌△ACE

BDCE,∵ABBC2

CDBCBD,

RtABM中,∵∠AMB90°,∠BAM30°,AB2,

AMABcos30,

SACDCDAM××

3)解:如圖3中,當∠AEC90°時,

∵△ABD≌△ACE

∴∠B=∠ACE60°,

∴∠CAE90°﹣∠ACE30°,

ECBDAC1

如圖4中,當∠CAE90°時,

∵△ABD≌△ACE

∴∠B=∠ACE60BDCE,

∴∠CEA90°﹣∠ACE30°,

EC2AC4,

BDCE4

綜上所述,BD14時,△ACE是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點B1y軸上,頂點C1,E1,E2,C2E3,E4,C3…在x軸上.已知正方形A1B1C1D1的邊長為1,∠B1C1O60°,B1C1B2C2B3C3,則正方形A2019B2019C2019D2019的邊長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC內(nèi)接于⊙OAB是⊙O的直徑,點D在⊙O上,過點C的切線交AD的延長線于點E,且AECE,連接CD

1)求證:DC=BC

2)若AB=5,AC=4,求tanDCE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtOAB中,∠AOB90°,OAOB4,以點O為圓心、2為半徑畫圓,點C是⊙O上任意一點,連接BCOC.將OC繞點O按順時針方向旋轉(zhuǎn)90°,交⊙O于點D,連接AD

1)當AD與⊙O相切時,

①求證:BC是⊙O的切線;

②求點COB的距離.

2)連接BDCD,當BCD的面積最大時,點BCD的距離為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗,當車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號);

;②;③;④

(2)和諧分式化成一個整式與一個分子為常數(shù)的分式的和的形式為:_______(要寫出變形過程);

(3)應用:先化簡,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)過點E8,0),矩形ABCD的邊AB在線段OE上(點A在點B的左側(cè)),點C、D在拋物線上,∠BAD的平分線AMBC于點M,點NCD的中點,已知OA2,且OAAD13.

1)求拋物線的解析式;

2FG分別為x軸,y軸上的動點,順次連接M、NG、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;

3)在x軸下方且在拋物線上是否存在點P,使△ODPOD邊上的高為?若存在,求出點P的坐標;若不存在,請說明理由;

4)矩形ABCD不動,將拋物線向右平移,當平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在⊙0上,點P是⊙0外一點.PA切⊙0于點A.連接OP交⊙0于點D,作ABOP于點C,交⊙0于點B,連接PB.

(1)求證:PB是⊙0的切線;

(2)PC=9,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案