【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有6個小三角形和1個正六邊形;第②個圖案中有10個小三角形和2個正六邊形;第③個圖案中有14個小三角形和3個正六邊形;…;按此規(guī)律排列下去,已知一個正六邊形的面積為,一個小三角形的面積為,則第③個圖案中所有的小三角形和正六邊形的面積之和為______.(結(jié)果用含的代數(shù)式表示)

【答案】

【解析】

由題意得出規(guī)律為每增加一個正六邊形,則增加4個小三角形,即可得出答案.

由題意:第①個圖案中有6個小三角形和1個正六邊形;
第②個圖案中有10=6+4×1=10個小三角形和2個正六邊形;
第③個圖案中有14=6+4×2=14個小三角形和3個正六邊形;

∵一個正六邊形的面積為,一個小三角形的面積為,

∴第③個圖案中所有的小三角形和正六邊形的面積之和為:;
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,E,F分別為BCCD的中點,連接AE,BF,交點為G.若正方形的邊長為2

1)求證:AEBF

2)將△BCF沿BF對折,得到△BPF(如圖2),延長FPBA的延長線于點Q,求AQ的長;

3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AMBF相交于點N,求四邊形MNGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( m

A.20B.30C.30D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OAOB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為(  )

A. (,)B. (2,)C. ()D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行“誦讀經(jīng)典”朗誦比賽,把比賽成績分為四個等次:優(yōu)秀,.良好,.一般,.較差,從參加比賽的學(xué)生中隨機抽取部分學(xué)生的成績進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果制作了如下的統(tǒng)計圖表(不完整):

學(xué)生朗讀比賽成績頻數(shù)分布表

等次

頻數(shù)

頻率

0.1

20

0.4

10

0.2

合計

1

1)這次共調(diào)查了______名學(xué)生,表中__________,_____;

2)補全頻數(shù)分布直方圖;

3)若抽查的學(xué)生中,等次中有2名女生,其他為男生,從等次中選取兩名同學(xué)參加市中學(xué)生朗誦比賽,求恰好選取一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸,軸于,兩點.點的坐標(biāo)為,拋物線經(jīng)過,兩點.

1)求拋物線的表達(dá)式;

2)如圖1是線段上一點,連接,若的值最小,求點坐標(biāo);

3)如圖2,在(2)的前提下,直線與直線的交點為,過點作軸的平行線交拋物線于點,若是拋物線上一點,軸上一點,是否存在以,,為頂點且為邊的平行四邊形,若存在,求出點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a0)的圖像經(jīng)過點A0,-3)、B1,0)、C3,0),聯(lián)結(jié)ABAC

1)求這個二次函數(shù)的解析式;

2)點D是線段AC上的一點,聯(lián)結(jié)BD,如果,求tan∠DBC的值;

3)如果點E在該二次函數(shù)圖像的對稱軸上,當(dāng)AC平分∠BAE時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,AC3,BC7,點P是邊AC上不與點A、C重合的一點,作PDBCAB邊于點D

1)如圖1,將APD沿直線AB翻折,得到AP'D,作AEPD.求證:AEED;

2)將APD繞點A順時針旋轉(zhuǎn),得到AP'D',點P、D的對應(yīng)點分別為點P'、D'

①如圖2,當(dāng)點D'ABC內(nèi)部時,連接PCD'B,求證:AP'C∽△AD'B;

②如果APPC51,連接DD',且DD'AD,那么請直接寫出點D'到直線BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張質(zhì)地完全相同的卡片,正面分別寫有四個角度,現(xiàn)將這四張卡片洗勻后,背面朝上.

(1)若從中任意抽取--張,求抽到銳角卡片的概宰;

(2)若從中任意抽取兩張,求抽到的兩張角度恰好互補的概率.

查看答案和解析>>

同步練習(xí)冊答案