【題目】在矩形ABCD中作圖:①分別以點(diǎn)BC為圓心,BC長為半徑畫弧,分別交AD于點(diǎn)HG;②分別以點(diǎn)B,C為圓心,大于BC的一半長為半徑畫弧,兩弧相交于點(diǎn)E,F;③作直線EF,交AD于點(diǎn)P.下列結(jié)論不一定成立的是(

A.BCBHB.CGAD

C.PBPCD.GH2AB

【答案】D

【解析】

根據(jù)作法及矩形的性質(zhì)和垂直平分線的性質(zhì)做判斷即可.

由作法①可得:BC=BH,故A正確;

由作法①可得:CG=BC,由四邊形ABCD是矩形可得:AD=BC,所以CG=AD,故B正確;

由作法②③可得:EF垂直平分BC,所以PB=PC,故C正確;

由已知無法確定GHAB的關(guān)系,故無法確定GH是否等于2AB,可以用排除法確定答案.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市大力發(fā)展鄉(xiāng)村旅游產(chǎn)業(yè),全力打造客都美麗鄉(xiāng)村,其中客家美景、客家文化、客家美食享譽(yù)全省,游人絡(luò)繹不絕.去年我市某村村民抓住機(jī)遇,投入20萬元創(chuàng)辦農(nóng)家樂(餐飲+住宿),一年時(shí)間就收回投資的80%,其中餐飲收入是住宿收入的2倍還多1萬元.

1)求去年該農(nóng)家樂餐飲和住宿的收入各為多少萬元?

2)今年該村村民再投入了10萬元,增設(shè)了土特產(chǎn)的實(shí)體銷售和網(wǎng)上銷售項(xiàng)目并實(shí)現(xiàn)盈利,村民在接受記者采訪時(shí)說,預(yù)計(jì)今年餐飲和住宿的收入比去年還會有10%的增長.這兩年的總收入除去所有投資外還能獲得不少于10萬元的純利潤,請問今年土特產(chǎn)銷售至少收入多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:① abc>0;② 2a+b=0;③ 當(dāng)m≠1時(shí),a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,

其中正確的有( 。

A. ①②③ B. ②④ C. ②⑤ D. ②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1CD交于點(diǎn)O,則圖中陰影部分的面積是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】池州十中組織七、八、九年級學(xué)生參加中國夢作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計(jì),繪制了以下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問題:

1)全校參賽作文篇數(shù)為   篇,補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是   ;

3)經(jīng)過評審,全校共有4篇作文榮獲一等獎,其中一篇來自七年級,兩篇來自八年級,一篇來自九年級,學(xué)校準(zhǔn)備從一等獎作文中任選兩篇刊登在?希堄脴錉顖D方法求出九年級一等獎作文登上?母怕剩

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-xb與反比例函數(shù)y (x0)的圖象交于點(diǎn)A(m,3)B(31)

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)點(diǎn)P(x,y)是直線AB上在第一象限內(nèi)的一個(gè)點(diǎn),過點(diǎn)PPDx軸于點(diǎn)D,連接OP,令△POD的面積為S,當(dāng)S>時(shí),直接寫出點(diǎn)P橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在線段上,在的同側(cè)作等腰和等腰,、分別交于點(diǎn)、.對于下列結(jié)論:

;;.其中正確的是(

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)x>0)的圖象經(jīng)過點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(12).過點(diǎn)AACy軸,AC1(點(diǎn)C位于點(diǎn)A的下方),過點(diǎn)CCDx軸,與函數(shù)的圖象交于點(diǎn)D,過點(diǎn)BBECD,垂足E在線段CD上,連接OCOD

1)求△OCD的面積;

2)當(dāng)BEAC時(shí),求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:如何計(jì)算平面直角坐標(biāo)系中任意兩點(diǎn)之間的距離?

探究問題:

為解決上面的問題,我們從最簡單的問題進(jìn)行研究.

探究一:在圖1中,已知線段AB,A(﹣20),B03),寫出線段AO的長,BO的長,所以線段AB的長為多少;把RtAOB向右平移3個(gè)單位,再向上平移2個(gè)單位,得到RtCDE,寫出RtCDE的頂點(diǎn)坐標(biāo)C,D,E,此時(shí)線段CD的長為多少,DE的長為多少,所以線段CE的長為多少.

探究二:在圖2中,已知線段AB的端點(diǎn)坐標(biāo)為Aab),Bcd),求出圖中AB的長(用含ab,c,d的代數(shù)式表示,不必證明).

歸納總結(jié):無論線段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為Ax1,y1),Bx2y2)時(shí)線段AB的長為多少(用含x1,y1,x2,y2的代數(shù)式表示,不必證明).

拓展與應(yīng)用:

運(yùn)用在圖3中,一次函數(shù)y=﹣x+3與反比例函數(shù)y=的圖象交點(diǎn)為AB,交點(diǎn)的坐標(biāo)分別是A12),B21).

①求線段AB的長;

②若點(diǎn)Px軸上動點(diǎn),求PA+PB的最小值.

查看答案和解析>>

同步練習(xí)冊答案