【題目】如圖,已知直線l與⊙O相離,OAl于點A,交⊙O于點P,點B是⊙O 上一點,AB是⊙O的切線,連接BP并延長,交直線l于點C

(1)求證ABAC;

(2)若PCOA=15,求⊙O的半徑的長.

【答案】(1)證明見解析;(2).

【解析】

(1)連接OB,求切線性質(zhì)得OBAB,可得∠OBP+ABP=90°,有等邊對等角得∠OBP=OPB,由對頂角及等量代換得到∠OBP=OPC,再由OA⊥直線l,得到∠APC+ACP=90°,從而∠ABP=ACP,由等角對等邊即可得AB=AC;

(2)延長AO交⊙OD,連接BD,設(shè)⊙O半徑為R,則AP=15-R,OB=R,根據(jù)勾股定理得出方程152-R2=(62-(15-R)2,求出R即可.求出AC=AB=4,DBP∽△CAP,得出,代入求出BP即可.

(1)連接OB,

OBAB,

∴∠OBP+ABP=90°,

OB=OP,

∴∠OBP=OPB,

∴∠OBP=OPC,

OA⊥直線l,

∴∠PAC=90°,

∴∠APC+ACP=90°,

∴∠ABP=ACP,

AB=AC;

(2)延長AO交⊙OD,連接BD,

設(shè)⊙O半徑為R,則AP=15-R,OB=R,

RtOBA中,AB2=152-R2,

RtAPC中,AC2=(2-(15-R)2,

AB=AC,

152-R2=(2-(15-R)2

解得:R=9,

即⊙O半徑為9,

AC=AB=12,

PD為直徑,OA⊥直線l,

∴∠DBP=PAC,

∵∠APC=BPD,

∴△DBP∽△CAP,

,

PB=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,∠C90°,∠B30°ADABC的角平分線.

1)求證:BD2CD;

2)若CD2,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點E(1,0)和F(5,0),并交y軸于D(0,-5);拋物線a≠0),

(1)試求拋物線的函數(shù)解析式;

(2)求證: 拋物線 x軸一定有兩個不同的交點;

(3)若a=1

①拋物線、頂點分別為 ( , )、( , ) ;當(dāng)x的取值范圍是_________ 時,拋物線 上的點的縱坐標(biāo)同時隨橫坐標(biāo)增大而增大;

②已知直線MN分別與x軸、、分別交于點Pm,0)、M、N,且MNy軸,當(dāng)1≤m≤5時,求線段MN的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE

1)求證:四邊形ABCD是平行四邊形;

2)若△ABE是等邊三角形,四邊形BCDE的面積等于2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,是中線,,垂足為,的延長線交于點,若,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且03)、40).

1)求經(jīng)過點的反比例函數(shù)的解析式;

2)設(shè)是(1)中所求函數(shù)圖象上一點,以頂點的三角形的面積與COD的面積相等.求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個三角形的兩條邊的和是第三邊的兩倍,則稱這個三角形是優(yōu)三角形,這兩條邊的比稱為優(yōu)比(若這兩邊不等,則優(yōu)比為較大邊與較小邊的比),記為.

1)命題:等邊三角形為優(yōu)三角形,其優(yōu)比為1”,是真命題還是假命題?

2)已知為優(yōu)三角形,,,,

①如圖1,若,,求的值.

②如圖2,若,求優(yōu)比的取值范圍.

3)已知是優(yōu)三角形,且,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一元二次方程,下列說法:①若,則方程必有一根為②若是方程的一個根,則一定有成立;③若,則方程一定有兩個不相等實數(shù)根;其中正確結(jié)論有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,對角線AC8cm.射線AFAC,垂足為A.動點P從點C出發(fā)在CA上運動,動點Q從點A出發(fā)在射線AF上運動,兩點的運動速度都是2cm/s.若兩點同時出發(fā),多少時間后,四邊形AQBP是特殊四邊形?請說明特殊四邊形的名稱及理由.

查看答案和解析>>

同步練習(xí)冊答案