【題目】已知,拋物線y=ax2+bx+4 與x軸交于點(diǎn)A(﹣3,0)和B(2,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,若點(diǎn)D為CB的中點(diǎn),將線段DB繞點(diǎn)D旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱(chēng)軸上時(shí),求點(diǎn)G的坐標(biāo);

(3)如圖2,若點(diǎn)D為直線BC或直線AC上的一點(diǎn),E為x軸上一動(dòng)點(diǎn),拋物線

y=ax2+bx+4對(duì)稱(chēng)軸上是否存在點(diǎn)F,使以B,D,F(xiàn),E為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵拋物線y=ax2+bx+4 與x軸交于點(diǎn)A(﹣3,0)和B(2,0),

,解得 ,

∴拋物線解析式為y=﹣ x2 x+4


(2)解:由(1)可知拋物線的對(duì)稱(chēng)軸為x=﹣

∴可設(shè)點(diǎn)G的坐標(biāo)為(﹣ ,y),

∵點(diǎn)D是BC的中點(diǎn),

∴點(diǎn)D的坐標(biāo)為(1,2),

在Rt△OBC中,BC= =2

∴DB= BC=

由旋轉(zhuǎn)的性質(zhì)可知,DG=DB,

∴(﹣ ﹣1)2+(y﹣2)2=5,解得:y=2+ 或y=2﹣ ,

∴點(diǎn)G的坐標(biāo)為(﹣ ,2+ )或(﹣ ,2﹣


(3)解:①當(dāng)BE為對(duì)角線時(shí),因?yàn)榱庑蔚膶?duì)角線互相垂直平分,所以此時(shí)D即為對(duì)稱(chēng)軸與AC的交點(diǎn),F(xiàn)為點(diǎn)D關(guān)于x軸的對(duì)稱(chēng)點(diǎn),

設(shè)直線AC解析式為y=kx+b,

∵C(0,4),A(﹣3,0)

,解得 ,

∴直線AC解析式為y= x+4,

∴當(dāng) 時(shí),

∴D ,

∴F ;

②當(dāng)BE為菱形的邊時(shí),有DF∥BE

I)當(dāng)點(diǎn)D在直線BC上時(shí),可求得直線BC解析式為y=﹣2x+4,

設(shè)D(a,﹣2a+4),則點(diǎn)F ,

∵四邊形BDFE是菱形,

∴FD=DB,

,解得 ,

∴F ;

II)當(dāng)點(diǎn)D在直線AC上時(shí),

設(shè)D ,則點(diǎn)F

∵四邊形BFDE是菱形,

∴FD=FB,

∴(a+ 2=(2+ 2+( a+4)2,解得:a1=﹣3(舍去),

∴F ,

綜上所述,點(diǎn)F的坐標(biāo)分別為


【解析】(1)把A、B兩點(diǎn)的坐標(biāo)代入拋物線解析式可求得a、b的值,可求得拋物線解析式;(2)可設(shè)出G點(diǎn)坐標(biāo),利用旋轉(zhuǎn)的性質(zhì)可求得DG=DB,從而可列出方程,可求得G點(diǎn)坐標(biāo);(3)分BE為對(duì)角線和BE為邊兩種情況,①當(dāng)BE為對(duì)角線時(shí),則可知BE⊥DF,可知D為對(duì)稱(chēng)軸與直線AC的交點(diǎn),F(xiàn)為D點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn),可先求得直線AC的解析式,可求得D點(diǎn)坐標(biāo),則容易求得F點(diǎn)坐標(biāo);②當(dāng)BE為邊時(shí),可利用直線BC或直線AC的解析式設(shè)出點(diǎn)D的坐標(biāo),從而可表示出F點(diǎn)的坐標(biāo),再利用菱形的性質(zhì)可列出方程,從而可求得F點(diǎn)的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為喜迎中華人民共和國(guó)成立周年,某中學(xué)將舉行以追尋紅色信仰,傳承紅色基因”為主題的重走長(zhǎng)征路活動(dòng).七年級(jí)需要在文具店購(gòu)買(mǎi)國(guó)旗圖案貼紙和小紅旗分發(fā)給學(xué)生作為活動(dòng)道具,已知每袋貼紙有張,每袋小紅旗有面,貼紙和小紅旗需整袋購(gòu)買(mǎi).甲、乙兩家文具店的標(biāo)價(jià)相同,每袋貼紙價(jià)格比每袋小紅旗價(jià)格少元,而且袋貼紙與袋小紅旗價(jià)格相同.

(1)水每袋國(guó)旗圖案貼紙和每袋小紅旗的價(jià)格各是多少元?

(2)如果購(gòu)買(mǎi)貼紙和小紅旅共袋,給每位參加活動(dòng)的學(xué)生分發(fā)國(guó)旗圖案貼紙張,小紅旗面,恰好全部分完,請(qǐng)問(wèn)該校七年級(jí)有多少名學(xué)生?

(3)(2)條件下,兩家文具店的優(yōu)惠如下:

甲文具店:全場(chǎng)商品購(gòu)物超過(guò)元后,超出元的部分打八五折;

乙文具店:相同商品,買(mǎi)十件贈(zèng)一件"

請(qǐng)問(wèn)在哪家文具店購(gòu)買(mǎi)比較優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對(duì)角線BD上,GECD,GFBC,AD1 500 m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3 100 m,則AGGE______m,由此可得小聰行走的路程為_______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長(zhǎng)AB= 米,背水坡CD的坡度i=1: (i為DF與FC的比值),則背水坡CD的坡長(zhǎng)為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B處,點(diǎn)A落在點(diǎn)A處.若AEa,ABbBFc,請(qǐng)寫(xiě)出a,b,c之間的一個(gè)等量關(guān)系為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E在DC上,若DE:EC=1:2,則BF:EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在直角坐標(biāo)系內(nèi)的位置如圖所示

(1)分別寫(xiě)出點(diǎn)A,C的坐標(biāo):A   C   ;

(2)△ABC的周長(zhǎng)為   ,面積為   ;

(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫(huà)出△A1B1C1與△ABC關(guān)于x軸對(duì)稱(chēng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連接AG,點(diǎn)E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,點(diǎn)EAD邊上,連接BE、CEEB平分∠AEC .

(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;

(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案