【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當∠ODB=30°時,求證:BC=OD.
【答案】證明見解析
【解析】
試題(1)由OD⊥AC OD為半徑,根據(jù)垂徑定理,即可得,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可證得BD平分∠ABC;
(2)首先由OB=OD,易求得∠AOD的度數(shù),又由OD⊥AC于E,可求得∠A的度數(shù),然后由AB是⊙O的直徑,根據(jù)圓周角定理,可得∠ACB=90°,繼而可證得BC=OD.
試題解析:(1)∵OD⊥AC OD為半徑,∴,∴∠CBD=∠ABD,
∴BD平分∠ABC;
(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,
又∵OD⊥AC于E,∴∠OEA=90°,
∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,
又∵AB為⊙O的直徑,∴∠ACB=90°,在Rt△ACB中,BC=AB,
∵OD=AB,
∴BC=OD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的含30°,60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點在一條直線上,連接BD,取BD的中點M,連接ME,MC.試判斷△EMC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形MON中,圓心角∠MON=60°,邊長為2的菱形OABC的頂點A,C,B分別在ON,OM和上,且ND∥AB,交CB的延長線于點D,則陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB 是⊙O 的直徑,CD 與⊙O 相切于點 C,與 AB 的延長線交于點 D,DE⊥AD 且與AC 的延長線交于點 E.
(1)求證:DC=DE;
(2)若 AD=2ED,AB=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高學生的閱讀興趣,某學校建立了共享書架,并購買了一批書籍.其中購買種圖書花費了3000元,購買種圖書花費了1600元,A種圖書的單價是種圖書的1.5倍,購買種圖書的數(shù)量比種圖書多20本.
(1)求和兩種圖書的單價;
(2)書店在“世界讀書日”進行打折促銷活動,所有圖書都按8折銷售學校當天購買了種圖書20本和種圖書25本,共花費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)(k,b為常數(shù),且)的圖像如圖(a)所示,
(1)方程的解為 ,不等式的解集是________.
(2)如圖(b)所示,正比例函數(shù)(m為常數(shù),且)與一次函數(shù)相交于點P,則不等式組的解集為________.
(3)在(2)的條件下,比較mx與的大。ㄖ苯訉懗鼋Y(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是的外角平分線上一點,且滿足,過點作于點,交的延長線于點,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某村的居民自來水管道需要改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成,若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍,如果由甲、乙兩隊先合做天,那么余下的工程由甲隊單獨完成還需5天.設(shè)這項工程的規(guī)定時間是x天,則根據(jù)題意,下面所列方程正確的是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com