分析 首先在AC上截取AE=PA,易得△APE是等邊三角形,繼而利用證得△OPA≌△CPE,即可得AC=AO+AP;過點C作CH⊥AB于H,易得S△ABC=$\frac{1}{2}$AB•CH,S四邊形AOCP=S△ACP+S△AOC=$\frac{1}{2}$AP•CH+$\frac{1}{2}$OA•CD=$\frac{1}{2}$AP•CH+$\frac{1}{2}$OA•CH=$\frac{1}{2}$CH•(AP+OA)=$\frac{1}{2}$CH•AC,即可得S△ABC=S四邊形AOCP.
解答 解:如圖1,在AC上截取AE=PA,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等邊三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
$\left\{\begin{array}{l}{PA=PE}\\{∠APO=∠CPE}\\{OP=CP\\;}\end{array}\right.$,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP;
如圖2,過點C作CH⊥AB于H,
∵在等腰△ABC中AB=AC,∠BAC=120°,
∴∠DAC=$\frac{1}{2}$∠ABC=60°,∠PAC=180°-∠BAC=60°,
∵∠PAC=∠DAC=60°,AD⊥BC,
∴CH=CD,
∴S△ABC=$\frac{1}{2}$AB•CH,S四邊形AOCP=S△ACP+S△AOC=$\frac{1}{2}$AP•CH+$\frac{1}{2}$OA•CD=$\frac{1}{2}$AP•CH+$\frac{1}{2}$OA•CH=$\frac{1}{2}$CH•(AP+OA)=$\frac{1}{2}$CH•AC,
∵AB=AC,
∴S四邊形AOCP=S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×2$\sqrt{3}$×1=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 此題考查了全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì).注意掌握輔助線的作法,通過證明△OPA≌△CPE得到AC=AO+AP是解題關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.此題綜合性很強,難度較大.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
平均數(shù) (分) | 中位數(shù) (分) | 眾數(shù) (分) | |
七年級 | 83 | 85 | 85 |
八年級 | 83 | 80 | 95 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com