2.當(dāng)-2≤x≤2時,函數(shù)y=kx-k+1(k為常數(shù)且k<0)有最大值3,則k的值為-$\frac{2}{3}$.

分析 先根據(jù)k<0判斷出函數(shù)的增減性,再由x的取值范圍得出x=-2時,y=3,代入函數(shù)解析式得出k的值即可.

解答 解:∵k<0,
∴函數(shù)y=kx-k+1是減函數(shù).
∵當(dāng)-2≤x≤2時,函數(shù)y=kx-k+1(k為常數(shù)且k<0)有最大值3,
∴當(dāng)x=-2時,y=3,
∴-2k-k+1=3,解得k=-$\frac{2}{3}$.
故答案為:-$\frac{2}{3}$.

點(diǎn)評 本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)的增減性是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,將一張長方形紙片ABCD沿EF折疊后,點(diǎn)D,C分別落在D′,C′地位置,ED′的延長線與BC相交于點(diǎn)G,若∠EFG=68°,則∠1的度數(shù)是136°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知y-1與x成正比例,當(dāng)x=2時,y=3.
(1)試求y與x的函數(shù)關(guān)系式;
(2)求當(dāng)x=-2時,y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.一次函數(shù)y=2x+4交y軸于點(diǎn)A,則點(diǎn)A的坐標(biāo)為( 。
A.(0,4)B.(4,0)C.(-2,0)D.(0,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,∠AOC與∠BOC的度數(shù)比為5:2,OD平分∠AOB,若∠COD=15°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,直線AB、CD相交于點(diǎn)O,OE⊥AB,點(diǎn)O為垂足,若∠EOD=58°,則∠AOC的度數(shù)為32度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.用一個乒乓球垂直向上拋出,則下列描述乒乓球的運(yùn)動速度v與運(yùn)動時間t關(guān)系的函數(shù)圖象中,正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.對于二次函數(shù)y=-x2+2x,有下列四個結(jié)論:①它的對稱軸是直線x=1;②設(shè)y1=-x12+2x1,y2=-x22+2x2,則當(dāng)x2>x1時,有y2>y1;③它的圖象與x軸的兩個交點(diǎn)是(0,0)和(2,0);④當(dāng)0<x<2時,y>0.其中正確的結(jié)論的個數(shù)為3個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,爸爸從家(點(diǎn)O)出發(fā),沿著等腰三角形AOB的邊OA→AB→BO的路徑去勻速散步,其中OA=OB.設(shè)爸爸距家(點(diǎn)O)的距離為S,散步的時間為t,則下列圖形中能大致刻畫S與t之間函數(shù)關(guān)系的圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案