【題目】如圖,Rt△AOB∽R(shí)t△DOC,∠ABO=30°,∠AOB=∠COD=90°,MOA的中點(diǎn),OA=4,將△COD繞點(diǎn)O旋轉(zhuǎn)一周,直線AD,CB交于點(diǎn)P,連接MP,則MP的最小值是_________

【答案】4-2

【解析】

根據(jù)相似三角形的判定定理證明COB∽△DOA,得到∠OBC=OAD,得到∠APB=AOB=90°,求出MSPS,根據(jù)三角形三邊關(guān)系解答即可.

如圖:

AB的中點(diǎn)S,連接MS、PS,

PS-MS≤PM≤MS+PS,

∵∠AOB=90°,OA=4,ABO=30°,

AB=2OA=8,OB=4,

∵∠AOB=COD=90°,

∴∠COB=DOA,

∵△AOB∽△DOC,

,

∴△COB∽△DOA,

∴∠OBC=OAD,

∵∠OBC+PBO=180°,

∴∠OAD+PBO=180°,AOB+APB=180°,

∴∠APB=AOB=90°,又SAB的中點(diǎn),

PS=AB=4,

MOA的中點(diǎn),SAB的中點(diǎn),

MS=OB=,

MP的最小值為4-,

故答案為:4-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)在線段上運(yùn)動(dòng)(不與,重合),連接,作,于點(diǎn).是等腰三角形,則的度數(shù)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,延長(zhǎng)BA至點(diǎn)E,使AE=AB,連接DE,AC

(1)求證:四邊形ACDE為平行四邊形;

(2)連接CE交AD于點(diǎn)O,若AC=AB=3,cosB=,求線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)OABCD,添加下列條件不能使四邊形ABCD成為平行四邊形的是( )

A.ABCDB.OBOD

C.BCD+ADC180°D.ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點(diǎn)P,過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,交GF的延長(zhǎng)線于點(diǎn)E,已知AB=4,⊙O的半徑為

(1)求線段AP的長(zhǎng);

(2)DE⊙O的切線,求線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)Cx軸上一點(diǎn),且AO=AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y=(k0)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,m),過(guò)點(diǎn)AABx軸于點(diǎn)B,且△AOB的面積為4.

(Ⅰ)求km的值;

(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點(diǎn),當(dāng)1x4時(shí),求函數(shù)值y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案