分析 (1)當∠EAF被對角線AC平分時,易證△ACF≌△ACE,因此CF=CE,即a=b.
(2)分兩種情況進行計算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,兩式聯(lián)立解方程組即可;
(3)先判斷出∠AFD=∠CEF,再判斷出AF=EF,從而得到△ADF≌△FCE即可.
解答 解:(1)∵四邊形ABCD是正方形,
∴∠BCF=∠DCE=90°
∵AC是正方形ABCD的對角線,
∴∠ACB=∠ACD=45°,
∴∠ACF=∠ACE,
∵∠EAF被對角線AC平分,
∴∠CAF=∠CAE,
在△ACF和△ACE中,
$\left\{\begin{array}{l}{∠ACF=∠ACE}\\{AC=AC}\\{∠CAF=∠CAE}\end{array}\right.$,
∴△ACF≌△ACE,
∴CF=CE,
∵CE=a,CF=b,
∴a=b,
∵△ACF≌△ACE,
∴∠AEF=∠AFE,
∵∠EAF=45°,
∴∠AEF=∠AFE=67.5°,
∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,
∵∠CAF=∠CAE=22.5°,
∴∠CAE=∠CEA,
∴CE=AC=4$\sqrt{2}$,
即:a=b=4$\sqrt{2}$;
(2)當△AEF是直角三角形時,
①當∠AFE=90°時,∴∠AFD+∠CFE=90°,
∵∠CEF+∠CFE=90°,
∴∠AFD=∠CEF
∵∠AFE=90°,∠EAF=45°,
∴∠AEF=45°=∠EAF
∴AF=EF,
在△ADF和△FCE中$\left\{\begin{array}{l}{∠ADF=∠FCE}\\{∠AFD=∠CEF}\\{AF=EF}\end{array}\right.$
∴△ADF≌△FCE,
∴FC=AD=4,CE=DF=CD+FC=8,
∴a=8,b=4
②當∠AEF=90°時,
同①的方法得,CF=8,CE=4,
∴a=4,b=8.
(3)ab=32,
理由:如圖,
∵AB∥CD
∴∠BAG=∠AFC,
∵∠BAC=45°,
∴∠BAG+∠CAF=45°,
∴∠AFC+∠CAF=45°,
∵∠AFC+∠AEC=180°-(∠CFE+∠CEF)-∠EAF=180°-90°-45°=45°,
∴∠CAF=∠AEC,
∵∠ACF=∠ACE=135°,
∴△ACF∽△ECA,
∴$\frac{AC}{EC}=\frac{CF}{AC}$,
∴EC×CF=AC2=2AB2=32
∴ab=32.
點評 此題是四邊形綜合題,主要考查了全等三角形的判定和性質,直角三角形的性質,相似三角形的性質和判定,解本題的關鍵是判斷△ACF∽△ECA,也是本題的難點.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 90,80 | B. | 70,80 | C. | 80,80 | D. | 100,80 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com