精英家教網 > 初中數學 > 題目詳情
在2ABCD中,對角線BD、AC相交于點O,BE=DF,過點O作線段GH交AD于點G,交BC于點H,順次連接EH、HF、FG、GE,求證:四邊形EHFG是平行四邊形。
在2ABCD中
AD//BC,AO=CO,BO=DO
GAO=HCO
AGO和CHO中
GAO=HCO
AO=CO
GOA=HOC
AGO≌CHO
∴GO=HO
又∵BO=DO,BE=DF
∴EO=FO
∴四邊形EHFG為平行四邊形。解析:
要證四邊形EHFG是平行四邊形,需證OG=OH,OE=OF,可分別由四邊形ABCD是平行四邊形和△OAG≌△OCH得出.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在?ABCD中,對角線AC、BD相交于點O,且AB≠AD,則下列四個結論①AC⊥BD,②AB=CD,③BO=OD,④∠BAD=∠BCD中不正確的是
 (填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

在2ABCD中,對角線BD、AC相交于點O,BE=DF,過點O作線段GH交AD于點G,交BC于點H,順次連接EH、HF、FG、GE,求證:四邊形EHFG是平行四邊形。

 

查看答案和解析>>

科目:初中數學 來源:2011- 2012學年北京四中初二第二學期期中數學試卷(帶解析) 題型:解答題

在2ABCD中,對角線BD、AC相交于點O,BE=DF,過點O作線段GH交AD于點G,交BC于點H,順次連接EH、HF、FG、GE,求證:四邊形EHFG是平行四邊形。

查看答案和解析>>

科目:初中數學 來源:2013屆北京四中初二第二學期期中數學試卷(解析版) 題型:解答題

在2ABCD中,對角線BD、AC相交于點O,BE=DF,過點O作線段GH交AD于點G,交BC于點H,順次連接EH、HF、FG、GE,求證:四邊形EHFG是平行四邊形。

 

查看答案和解析>>

同步練習冊答案