【題目】合肥百貨大廈某店賣一種狗寶寶布娃娃紀(jì)念品,已知成批購進(jìn)時(shí)單價(jià)為4,根據(jù)市場(chǎng)調(diào)查,銷售量與銷售單價(jià)在一段時(shí)間內(nèi)滿足如下關(guān)系:單價(jià)為10元時(shí)銷售量為300,而單價(jià)每降低1,就可多售出5,那么求可獲得最大利潤為__.

【答案】1800

【解析】

設(shè)降價(jià)x元時(shí)可獲得利潤y元,根據(jù)總利潤=銷售數(shù)量×每件的利潤就可以表示出利潤yx之間的函數(shù)關(guān)系式,由函數(shù)的性質(zhì)就可以求出結(jié)論.

由題意,得

y=(10-x-4)(300+5x),(0≤x≤6)

y=-5x2-270x+1800,

, a=-5<0,

∴y=-5x2-270x+1800的圖象在對(duì)稱軸的右側(cè)yx的增大而減少

∴當(dāng)x=0時(shí),y最大=1800元.

故答案為: 1800.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AC的坐標(biāo)分別為(a,0),(0,b),點(diǎn)B在第一象限內(nèi),且a,b滿足|a364|+0.點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著長方形OABC的邊逆時(shí)針移動(dòng)一周(即:沿著OABCO的路線移動(dòng)).

1)求點(diǎn)B的坐標(biāo);

2)當(dāng)點(diǎn)P移動(dòng)4秒時(shí),求出點(diǎn)P的坐標(biāo);

3)在移動(dòng)過程中,當(dāng)點(diǎn)Px軸的距離為5個(gè)單位長度時(shí),請(qǐng)直接寫出點(diǎn)P移動(dòng)的時(shí)間t

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)己知2a-1的平方根是土33a+b-1的平方根是土4,c的整數(shù)部分,求a+2b+c的算術(shù)平方根.

2)已知在△ABC中,AB=10,BC=21,AC=17,則△ABC面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最近霧霾天氣頻繁,使得空氣凈化器得以暢銷.某商場(chǎng)代理銷售某種空氣凈化器,其進(jìn)價(jià)是500/臺(tái),經(jīng)過市場(chǎng)銷售后發(fā)現(xiàn),當(dāng)售價(jià)是1000/臺(tái)時(shí),每月可售出50臺(tái),且售價(jià)每降低20,每月就可多售出5臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于600/臺(tái),代理銷售商每月要完成不低于60臺(tái)的銷售任務(wù).

(1)試確定月銷售量y(臺(tái))與售價(jià)x(/臺(tái))之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.

(2)當(dāng)售價(jià)x(/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤w()最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫出與△ABC 關(guān)于 y 軸對(duì)稱的圖形△A1B1C1;

(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱無字證明,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2 , 也可以表示為ab+(a-b)2由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長為a,b,斜邊長為c,則a2+b2=c2

1)圖②為美國第二十任總統(tǒng)伽菲爾德的總統(tǒng)證法,請(qǐng)你利用圖②推導(dǎo)勾股定理.

2)如圖③,直角△ABC中,∠ACB=90°AC=3cm,BC=4cm,則斜邊AB上的高CD的長為多少?

3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a+b)(a+2b=a2+3ab+2b2 , 畫在如圖4的網(wǎng)格中,并標(biāo)出字母ab所表示的線段.

查看答案和解析>>

同步練習(xí)冊(cè)答案