【題目】已知:如圖BE//CF,BE、CF分別平分∠ABC和∠BCD, 求證:AB//CD
證明:∵ BE、CF分別平分∠ABC和∠BCD(已知)
∴ ∠1=∠ ∠2=∠ ( )
∵ BE//CF( )
∴ ∠1=∠2( )
∴ ∠ABC=∠BCD
即∠ABC=∠BCD
∴ AB//CD( )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為 的網(wǎng)格圖形中,每個小正方形的頂點(diǎn)稱為格點(diǎn).從一個格點(diǎn)移動到與之相距 的另一個格點(diǎn)的運(yùn)動稱為一次跳馬變換.例如,在 的正方形網(wǎng)格圖形中(如圖1),從點(diǎn) 經(jīng)過一次跳馬變換可以到達(dá)點(diǎn) , , , 等處.現(xiàn)有 的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn) 經(jīng)過跳馬變換到達(dá)與其相對的頂點(diǎn) ,最少需要跳馬變換的次數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OB=1,以O(shè)B為直角邊作等腰直角三角形A1BO,再以O(shè)A1為直角邊作等腰直角三角形A2A1O,如此下去,則線段OAn的長度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.
(1)求證:∠ABO=∠CAD;
(2)求四邊形ABCD的面積;
(3)如圖2,E為∠BCO的鄰補(bǔ)角的平分線上的一點(diǎn),且∠BEO=45°,OE交BC于點(diǎn)F,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在矩形中,的平分線DE交BC邊于點(diǎn)E,點(diǎn)P在線段DE上(其中EP<PD).
(1)如圖1,若點(diǎn)F在CD邊上(不與點(diǎn)C,D重合),將繞點(diǎn)P逆時針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交AD邊于點(diǎn)H、G.
①求證:;
②探究:、、之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)拓展:如圖2,若點(diǎn)F在CD的延長線上,過點(diǎn)P作,交射線DA于點(diǎn)G.你認(rèn)為(2)中DF、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明,若不成立,請寫出它們所滿足的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC邊上的高,BE平分∠△ABC交AD于點(diǎn)E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△EBC是等邊三角形.
(1)求證:△ABE≌△DCE;
(2)求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,求證:三角形的三條角平分線相交于一點(diǎn),并且這一點(diǎn)到三邊的距離相等;
(2)如圖2,若的平分線與外角的平分線相交于點(diǎn)連接,若,則是 度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com