精英家教網 > 初中數學 > 題目詳情
某商場試銷一種成本為每件60元的服裝,經試銷發(fā)現,銷售量y(件)與銷售單價x(元)符合一次函數y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;
(3)若該商場想獲得500元的利潤且盡可能地擴大銷售量,則銷售單價應定為多少元?
(4)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
分析:(1)把x=65,y=55;x=75,y=45代入y=kx+b中,列方程組求k、b的值即可;
(2)根據利潤W=(x-60)×銷售量y,列出函數關系式;
(3)利用(2)的函數關系式,列方程求出當w=500時,銷售單價x的值;
(4)利用(2)的函數關系式,配方成頂點式,可求最大利潤.
解答:解:(1)根據題意得
65k+b=55
75k+b=45.
解得k=-1,b=120.
所求一次函數的表達式為y=-x+120.(3分)

(2)W=(x-60)•(-x+120)=-x2+180x-7200=-(x-90)2+900,(6分)

(3)由W=500,得500=-x2+180x-7200,
整理得,x2-180x+7700=0,解得,x1=70,x2=110.
因為要盡量擴大銷售量,所以當x=70時,銷售利潤為500元.(8分)

(4)∵拋物線的開口向下,
∴當x=90時,w有最大值,此時w=900,
∴當銷售單價定為90元時,商場可獲得最大利潤,最大利潤是900元.(10分)
點評:本題考查了二次函數的實際應用.此題為數學建模題,借助二次函數解決實際問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某商場試銷一種成本為50元/件的T恤,規(guī)定試銷期間單價不低于成本單價,又獲利不得高于50%.經試銷發(fā)現,銷售量y(件)與銷售單價x(元/件)符合一次函數關系,試銷數據如下表:
售價(元/件)  55 60 70
 銷量(件) 75 70 60
(1)求一次函數y=kx+b的表達式;
(2)若該商場獲得利潤為ω元,試寫出利潤ω與銷售單價x之間的關系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•如東縣一模)某商場試銷一種成本為每件60元的服裝,經試銷發(fā)現,銷售量y(件)與銷售單價x(元)符合一次函數y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;
(3)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經試銷發(fā)現,銷售量y(件)與銷售單價x(元)的關系符合一次函數y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鄂爾多斯)某商場試銷一種成本為每件60元的T恤,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經試銷發(fā)現,銷售量y(件)與銷售單價x(元)之間的函數圖象如圖所示:
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍.
(2)若商場銷售這種T恤獲得利潤為W(元),求出利潤W(元)與銷售單價x(元)之間的函數關系式;并求出當銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經試銷發(fā)現,銷售量y(件)與銷售單價x(元)的關系符合一次函數y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?
(3)若獲得利潤不低于1200元,試確定銷售單價x的范圍.

查看答案和解析>>

同步練習冊答案