【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.

(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

【答案】
(1)

解:作DH⊥AB于H,如圖1,

易得四邊形BCDH為矩形,

∴DH=BC=12,CD=BH,

在Rt△ADH中,AH= = =9,

∴BH=AB﹣AH=16﹣9=7,

∴CD=7


(2)

解:當(dāng)EA=EG時,則∠AGE=∠GAE,

∵∠AGE=∠DAB,

∴∠GAE=∠DAB,

∴G點與D點重合,即ED=EA,

作EM⊥AD于M,如圖1

,

則AM= AD=

∵∠MAE=∠HAD,

∴Rt△AME∽Rt△AHD,

∴AE:AD=AM:AH,即AE:15= :9,解得AE=

當(dāng)GA=GE時,則∠AGE=∠AEG,

∵∠AGE=∠DAB,

而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,

∴∠GAE=∠ADG,

∴∠AEG=∠ADG,

∴AE=AD=15,

綜上所述,△AEC是以EG為腰的等腰三角形時,線段AE的長為 或15


(3)

解:作DH⊥AB于H,如圖2

則AH=9,HE=AE﹣AH=x﹣9,

在Rt△ADE中,DE= = ,

∵∠AGE=∠DAB,∠AEG=∠DEA,

∴△EAG∽△EDA,

∴EG:AE=AE:ED,即EG:x=x: ,

∴EG= ,

∴DG=DE﹣EG=

∵DF∥AE,

∴△DGF∽△EGA,

∴DF:AE=DG:EG,即y:x=( ): ,

∴y= (9<x< ).


【解析】(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,則DH=BC=12,CD=BH,再利用勾股定理計算出AH,從而得到BH和CD的長;(2)分類討論:當(dāng)EA=EG時,則∠AGE=∠GAE,則判斷G點與D點重合,即ED=EA,作EM⊥AD于M,如圖1,則AM= AD= ,通過證明Rt△AME∽Rt△AHD,利用相似比可計算出此時的AE長;當(dāng)GA=GE時,則∠AGE=∠AEG,可證明AE=AD=15,(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE= ,再證明△EAG∽△EDA,則利用相似比可表示出EG= ,則可表示出DG,然后證明△DGF∽△EGA,于是利用相似比可表示出x和y的關(guān)系. 本題考查了四邊形的綜合題:熟練掌握梯形的性質(zhì)等等腰三角形的性質(zhì);常把直角梯形化為一個直角三角形和一個矩形解決問題;會利用勾股定理和相似比計算線段的長;會運用分類討論的思想解決數(shù)學(xué)問題.
【考點精析】根據(jù)題目的已知條件,利用直角梯形的相關(guān)知識可以得到問題的答案,需要掌握一腰垂直于底的梯形是直角梯形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強擲兩枚質(zhì)地均勻的骰子,每個骰子的六個面上分別刻有1到6的點數(shù),則兩枚骰子點數(shù)相同的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為

(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?

(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達(dá)E處,點B沿北偏東50°方向移動334米到達(dá)點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,經(jīng)過點O的直線l將四邊形分成兩部分,直線l與OC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ [θ,a ]

(理解)若點D與點A重合,則這個操作過程為FZ [45°,3];

(嘗試)

(1)若點D恰為AB的中點(如圖2),求θ;

(2)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上(如圖3),求出a的值;若點E落在四邊形OABC的外部,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結(jié)CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是雙曲線 在第三象限分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內(nèi),且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線 上運動,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級三班學(xué)生蘇琪為幫助同桌萬宇鞏固“平面直角坐標(biāo)系四個象限內(nèi)及坐標(biāo)軸上的點的坐標(biāo)特點”這一基礎(chǔ)知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標(biāo)系中找出點M(a,b)的位置.
(1)請你用樹狀圖幫萬宇同學(xué)進(jìn)行分析,并寫出點M所有可能的坐標(biāo);
(2)求點M在第二象限的概率;
(3)張老師在萬宇同學(xué)所畫的平面直角坐標(biāo)系中,畫了一個半徑為3的⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,直線l過點M(3,0)且平行于y軸.

(1)作出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標(biāo).

(2)如果點P的坐標(biāo)是(﹣a,0),其中a>0,點P關(guān)于y軸的對稱點是P1,點P1關(guān)于直線l的對稱點是P2,求P1P2的長.(用含a的代數(shù)式表示)

(3)通過計算加以判斷,PP2的長會不會隨點P位置的變化而變化.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=kx2﹣k和y=kx+k(k≠0)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案