【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關(guān)系為

(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關(guān)系,為什么?

(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達E處,點B沿北偏東50°方向移動334米到達點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結(jié)論求E、F之間的距離.

【答案】
(1)EF=BE+DF
(2)

解:EF=BE+DF仍然成立.

證明:如圖2,延長FD到G,使DG=BE,連接AG,

∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,

∴∠B=∠ADG,

在△ABE和△ADG中,

,

∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,

∵∠EAF= ∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,

∴∠EAF=∠GAF,

在△AEF和△GAF中,

,

∴△AEF≌△GAF(SAS),

∴EF=FG,

∵FG=DG+DF=BE+DF,

∴EF=BE+DF


(3)

解:如圖3,連接EF,延長AE、BF相交于點C,

∵∠AOB=20°+90°+(90°﹣60°)=140°,

∠EOF=70°,

∴∠EOF= ∠AOB,

又∵OA=OB,

∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,

∴符合探索延伸中的條件,

∴結(jié)論EF=AE+BF成立,

即EF=583米.


【解析】解:(1)EF=BE+DF;
證明:如圖1,延長FD到G,使DG=BE,連接AG,

在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
所以答案是:EF=BE+DF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2),B(m,-1)

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)x軸上是否存在點P(n0),使△ABP為等腰三角形,請你直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是AB上任一點ABC=ABD,從下列各條件中補充一個條件,不一定能推出ΔAPC≌ΔAPD的是( )

A.BC=BD BACB=ADB CAC=AD DCAB=DAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線經(jīng)過坐標原點O,點A(6,﹣6 ),且以y軸為對稱軸.

(1)求拋物線的解析式;
(2)如圖2,過點B(0,﹣ )作x軸的平行線l,點C在直線l上,點D在y軸左側(cè)的拋物線上,連接DB,以點D為圓心,以DB為半徑畫圓,⊙D與x軸相交于點M,N(點M在點N的左側(cè)),連接CN,當MN=CN時,求銳角∠MNC的度數(shù);

(3)如圖3,在(2)的條件下,平移直線CN經(jīng)過點A,與拋物線相交于另一點E,過點A作x軸的平行線m,過點(﹣3,0)作y軸的平行線n,直線m與直線n相交于點S,點R在直線n上,點P在EA的延長線上,連接SP,以SP為邊向上作等邊△SPQ,連接RQ,PR,若∠QRS=60°,線段PR的中點K恰好落在拋物線上,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)將△ABC沿y軸翻折,畫出翻折后的△A1B1C1 , 點A的對應點A1的坐標是
(2)△ABC關(guān)于x軸對稱的圖形△A2B2C2 , 直接寫出點A2的坐標
(3)若△DBC與△ABC全等(點D與點A重合除外),請直接寫出滿足條件點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B,C重合的一個動點,把△EBF沿EF折疊,點B落在B′處.若△CDB′恰為等腰三角形,則DB′的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設點M運動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.

(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

同步練習冊答案