精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,A(2,4),B(4,2),x軸上取一點P,使點P到點A和點B的距離之和最小,則點P的坐標是_________

【答案】(2,0)

【解析】

A關于x軸的對稱點C,連接ACx軸于D,連接BC交交x軸于P,連接AP,此時點P到點A和點B的距離之和最小,求出C(的坐標,設直線CB的解析式是ykxb,把C、B的坐標代入求出解析式是yx2,把y0代入求出x即可.

A關于x軸的對稱點C,連接ACx軸于D,連接BC交交x軸于P,連接AP,

則此時APPB最小,

即此時點P到點A和點B的距離之和最小,

A24),

C2,4),

設直線CB的解析式是ykxb,

CB的坐標代入得:

,

解得:k1,b2,

yx2,

y0代入得:0x2,

x2,

P的坐標是(2,0),

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QCBC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,ECF是等腰直角三角形,其中CE=CFGCDEF的交點.

1)求證:BCF≌△DCE;

2)若BC=5,CF=3BFC=90°,求DGGC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的頂點坐標分別為,,,把沿直線翻折,點的對應點為,拋物線經過點,頂點在直線上.

證明四邊形是菱形,并求點的坐標;

求拋物線的對稱軸和函數表達式;

在拋物線上是否存在點,使得的面積相等?若存在,直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數xy軸分別交于A、B兩點,x、y軸交于CD兩點.

1)求A、BC、D的坐標(用含k、m的代數式表示);

2)若,求的值;

3)在(2)的前提下,若的面積為27,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把大小和形狀完全相同的張卡片分成兩組,每組張,分別標上、、,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.

請用畫樹狀圖的方法求取出的兩張卡片數字之和為奇數的概率;

若取出的兩張卡片數字之和為奇數,則甲勝;取出的兩張卡片數字之和為偶數,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線

當拋物線的頂點在軸上時,求該拋物線的解析式;

不論取何值時,拋物線的頂點始終在一條直線上,求該直線的解析式;

若有兩點,且該拋物線與線段始終有交點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=6,BC=8.

1)用直尺和圓規(guī)作∠A的平分線,交BC于點D;(要求:不寫作法,保留作圖痕跡)

2)求SADC: S△ADB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數).

(1)求證無論k為何值,方程總有兩個不相等實數根;

(2)已知函數y=x2+(k﹣5)x+1﹣k的圖象不經過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數值.

查看答案和解析>>

同步練習冊答案